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Abstract

Large language models (LLMs)-powed agents have demon-
strated impressive generative capabilities but remain suscepti-
ble to hallucinations, factual inaccuracy, and policy violations.
Quantifying and certifying these generation risks is funda-
mental to ensuring their trustworthy deployment. This paper
proposes a unified statistical framework for certifying LLM
agent generation risks under finite samples. We formalize risk
as a bounded functional of the model’s conditional distribution
and develop three complementary certification paradigms: (1)
Concentration-based certification, which leverages classical
inequalities to bound population risk; (2) Conformal gen-
eration risk certification, which provides distribution-free,
finite-sample guarantees using conformal prediction; and (3)
Online conformal certification, which extends these guaran-
tees to temporally dependent or adaptive settings. We establish
theoretical coverage guarantees for each paradigm and em-
pirically evaluate them across factuality, toxicity, and policy-
violation benchmarks. Our results demonstrate that conformal
and online certification achieve valid and adaptive risk cov-
erage while maintaining computational efficiency, paving the
way toward practical, provably safe LLM agent deployment.

Introduction

Large language models (LLMs) (Touvron et al. 2023; Ope-
nAl et al. 2023) have recently demonstrated emergent capa-
bilities across a wide range of natural language processing
(NLP) tasks, including text summarization, question answer-
ing, and machine translation. Moreover, LLM-powered agent
frameworks, such as OpenAl’s ChatGPT-Agent, Codex, and
Anthropic’s Claude Code, have extended these models’ abili-
ties to interactive reasoning and tool-use scenarios. However,
prior studies (Wang et al. 2023; Liang et al. 2022; Liu et al.
2023) have revealed that both the generation behavior of
LLMs and the decision-making processes of LLM agents
can often be unreliable, untrustworthy, and even risky in
real-world settings. These observations underscore the ur-
gent need for certifiable control of LLM generation risks,
particularly before deploying such systems in safety-critical
domains.

This motivates a key research question: Can we provide
certified upper bounds on the risk of LLM agents that remain
valid under finite samples and distributional shift?
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We answer this question through a unified framework that
establishes finite-sample risk certificates:

Pr(Ry <R%) >1-34, 1)

where Ry denotes the true generation risk and RS the certi-
fied bound. We analyze three paradigms, concentration, con-
formal, and online conformal, and evaluate their empirical
behavior on realistic safety benchmarks.

In the context of LLM agents, the notion of generation risk
encompasses diverse forms of undesirable or unsafe behav-
iors arising from model outputs or decisions. For instance,
code-generation agents such as Codex or Claude Code face
risks related to functional correctness, security vulnerabili-
ties, and unsafe API usages, where even minor errors can
propagate into critical system failures or exploitable bugs.
In contrast, conversational or task-oriented agents such as
ChatGPT-Agent may incur privacy leakage risks—by inadver-
tently exposing sensitive information—or factuality and align-
ment risks, where generated content deviates from ground
truth or violates platform policies. More broadly, these risks
reflect the gap between the intended safe behavior of the
agent and the stochastic nature of its outputs under real-world
uncertainty, motivating the need for formal certification of
generation risks across both static and interactive LLM set-
tings.

Formal Problem Definition

Let (X,Y") denote the agent input-output pair drawn from the
induced data distribution Dy of an LLM agent parameterized
by 6. Here, X € X represents the agent input, which may
include the user’s task description, environmental context,
intermediate memory, or external tool states, while Y € Y
denotes the agent output or action, such as a text response,
code snippet, or structured API call. A measurable risk func-
tion r : X x Y — [0,1] quantifies the likelihood of un-
desirable outcomes under a given input—output pair, where
r(X,Y) = 1 indicates an unsafe or erroneous generation
(e.g., a code vulnerability, factual hallucination, or privacy
leak), and (X, Y") = 0 indicates a safe generation.
The true generation risk under the model distribution is
defined as
Ro = E(x,y)~p, [1(X,Y)], (2)
which measures the expected probability that an LLM agent
produces unsafe or incorrect behaviors when interacting with



its environment. Given n i.i.d. samples {(x;,y;)}?; ob-
tained from evaluation or logged interactions, the empirical
risk is estimated as

n
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serving as a point estimator of Rg. Our goal is to construct a
finite-sample upper confidence bound R? satisfying

Pr(Ry <R°) > 1 -5, )

for a user-specified confidence level § € (0, 1), without as-
suming any parametric form of Dy.

This formulation enables flexible instantiations of r across
domains: for code-generation agents (e.g., Codex, Claude
Code), r may capture compilation failures, functional bugs,
or insecure API usages; for conversational agents (e.g.,
ChatGPT-Agent), » may quantify privacy leakage, factual
inconsistency, or policy-unsafe outputs; and for reasoning or
tool-use agents, r can represent incorrect action sequencing,
goal violations, or unsafe external calls.

Three Certification Paradigms

We now discuss three complementary paradigms for certi-
fying generation risks of LLM agents, each corresponding
to a different set of statistical assumptions and deployment
regimes. Specifically, we present (1) concentration-based
bounds that rely on i.i.d. sampling assumptions, (2) con-
formal risk certification that provides nonparametric finite-
sample guarantees, and (3) online conformal certification
that extends coverage to temporally dependent, interactive
environments.

Concentration-Based Certification

When the samples {(z;,y;)}, are assumed to be drawn
i.i.d. from Dy, standard concentration inequalities can be
used to provide probabilistic upper bounds on the true risk
Ro. By Hoeffding’s inequality, we have:
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This bound ensures that with probability at least 1 — §, the
true risk lies within a deviation radius of O(n~'/2) around
the empirical mean. While this is simple and closed-form, it
can be overly conservative when the variance of r(x;,y;) is
small or when data exhibit mild dependence.

To address this, the empirical Bernstein bound (Maurer
and Pontil 2009) incorporates the sample variance 52 =
n%l (@i, y) — ﬁn)Q yielding a tighter certificate:
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The empirical Bernstein bound adapts to the heterogeneity
of risk realizations, providing narrower confidence intervals
when generation outcomes are stable.

Application Context. Concentration-based certification is
most suitable for offline evaluation of LLMs or agents, where
independent task—generation pairs can be collected in batch
(e.g., static safety benchmarks, red-teaming datasets, or of-
fline code analysis). Its computational efficiency and sim-
plicity make it ideal for preliminary certification of model
checkpoints before deployment. However, it becomes less
reliable when interactions are correlated, such as in conversa-
tional or tool-use loops, or when the data distribution drifts
over time.

Conformal Generation Risk Certification

Conformal prediction (Vovk, Gammerman, and Shafer 2005;
Shafer and Vovk 2008) provides distribution-free coverage
guarantees that hold for finite samples without assuming any
parametric form of Dy. Let s; = r(x;, y;) denote calibration
scores on a held-out calibration set of size ng,. We compute
the (1 — «) quantile:

fo = inf{t €10,1]:
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Then the conformal risk certificate is defined as
Ry = qi-a, ®)

which satisfies the marginal guarantee:

Pr(r(zn+1,Yns1) < ﬁélia)) >1-a ©

Interpretation and Advantages. This bound adapts au-
tomatically to the empirical distribution of observed risks,
tightening the coverage whenever most generations are safe.
Unlike Eq. equation 5—equation 6, it does not rely on any in-
dependence or variance assumptions, and thus remains valid
even under heavy-tailed, multimodal, or unknown distribu-
tions. Intuitively, the quantile ¢; _, represents the smallest
risk level such that at least (1 — ) fraction of past generations
were safer than it.

Application Context. Conformal risk certification is par-
ticularly suited for dynamic evaluation and deployment audit-
ing of LLMs, where one can calibrate a bound using recent
behavioral logs or benchmark samples. For example, in a
code-generation setting, s; may represent the binary safety
outcome of executed programs; in dialogue systems, it may
reflect per-turn violation indicators. This paradigm provides
interpretable and data-adaptive safety thresholds for real-
world use, though it assumes exchangeability between past
and future samples.

Online Conformal Certification

In interactive or streaming settings, LLM agents continu-
ously generate outputs conditioned on evolving contexts and
previous interactions, breaking the i.i.d. or exchangeabil-
ity assumptions. To handle temporal dependence, we adopt
an online conformal certification framework. At each time
step t, let r4 = r(x, y:) denote the observed risk, and let
Wi = {ri—w+1,- .., 7} denote a sliding calibration window
of width w. We compute the (1 — &) quantile of recent risks:

q: = Quantile, _,(W;), (10)



and update the smoothed certificate via an exponential mov-
ing average:

Rie=(1-=B)Ri-1+ By (11)
Here, 5 € (0, 1] controls temporal adaptivity: larger /3 in-
creases responsiveness but reduces stability.

Under -mixing dependence with coefficient ¢(k), cover-
age degradation scales as O(¢(w)) (Xu et al. 2023), meaning
that as dependence weakens over time, the certification re-
mains approximately valid.

Application Context. Online conformal certification is
most applicable to interactive LLM agents—such as au-
tonomous chat assistants, multi-turn reasoning systems, or
tool-augmented agents—that operate in non-stationary envi-
ronments. It enables continual risk monitoring and adaptation
in the presence of user feedback, changing task distributions,
or evolving safety policies. Practically, this can be imple-

mented as a real-time risk dashboard, updating R, at each
interaction step to flag unsafe drift. Although online confor-
mal bounds are approximate, they provide a practical middle
ground between provable static guarantees and fully heuristic
monitoring.

Summary. In summary, concentration-based bounds offer
simple analytical guarantees under independence; conformal
certification achieves finite-sample validity without distribu-
tional assumptions; and online conformal methods extend
certification to temporally dependent, streaming scenarios.
Together, these paradigms form a unified toolbox for quan-
tifying and certifying the safety of LLM generations across
diverse deployment conditions.

Evaluation

We empirically evaluate the proposed certification paradigms
on two representative LLM agent benchmarks: coding agent
tasks and web browsing tasks. Each benchmark contains real-
istic, safety-critical scenarios where generation failures cor-
respond to concrete risks. We consider two advanced agent
frameworks—Claude Code (Anthropic) for program syn-
thesis and debugging, and ChatGPT-Agent (OpenAl) for
multi-turn web browsing and query execution. All exper-
iments are conducted under three certification paradigms:
concentration-based, conformal, and online conformal.

Evaluation Setup

Datasets. Coding Agent Tasks. We collect 1,200 program-
ming problems from the HumanEval (Chen et al. 2021) and
MBPP (Austin et al. 2021) datasets, extended with sandbox
execution to test code safety. Each generation is labeled un-
safe (r = 1) if it fails to compile, triggers an exception, or
invokes disallowed APIs (e.g., file system writes).

Web Browsing Tasks. We employ WebArena (Zhou et al.
2023) with real-world browsing instructions (e.g., “Find
today’s weather in Chicago and summarize recent head-
lines”). The ChatGPT-Agent executes tool calls through sim-
ulated browser APIs. A sample is unsafe if it leaks sensitive
query parameters, visits unauthorized domains, or generates
policy-violating content (e.g., misinformation, scraping pri-
vate data).

Metrics. For each scenario, we compute:
* Empirical risk R ,,: fraction of unsafe generations.

« Certified risk bound R°: computed using each paradigm
with § = 0.05 (95% confidence).

» Coverage rate: proportion of runs satisfying Ry < R?
over 20 resampled trials.

Implementation. For conformal methods, 1, = 200 sam-
ples are held out for calibration with o« = 0.05. In online
conformal experiments, a sliding window of w = 100 and
smoothing 3 = 0.2 are used. All bounds are estimated over
non-overlapping interaction batches to simulate periodic au-
diting.

Results on Coding Agent Tasks

Table 1 reports results for code-generation safety certification.

The empirical risk R,, corresponds to the average unsafe rate
across test programs.

Table 1: Results on coding agent tasks (§ = 0.05).

Method R RS  Coverage (%)
Hoeffding Bound 0.142  0.171 95.4
Empirical Bernstein  0.142  0.157 94.9
Conformal 0.142 0.154 95.0
Online Conformal 0.143 0.158 93.7

Analysis. Both the empirical Bernstein and conformal
bounds yield significantly tighter certificates than Hoeffd-
ing, with near-nominal coverage. Conformal certification
automatically adapts to the empirical variance of risk scores,
producing the lowest valid bound without requiring vari-
ance estimation. Online conformal remains stable under mild
temporal dependencies introduced by iterative debugging
sessions in Claude Code. Overall, these results confirm that
our methods provide statistically meaningful safety upper
bounds for code agents, effectively quantifying the residual
probability of unsafe generations.

Results on Web Browsing Tasks

Table 2 summarizes the certification results for ChatGPT-
Agent web browsing scenarios.

Table 2: Results on web browsing tasks (6 = 0.05).

Method R RS Coverage (%)
Hoeffding Bound 0.089 0.117 96.1
Empirical Bernstein  0.089 0.104 95.0
Conformal 0.089 0.101 95.2
Online Conformal 0.090 0.106 93.9




Analysis. The browsing tasks exhibit lower inherent risk
but higher temporal correlation due to multi-turn tool calls.
Concentration-based bounds remain valid yet slightly over-
conservative, while conformal bounds again offer tighter cal-
ibration. Online conformal certification successfully tracks
risk drift as the agent adapts to changing query patterns
and browsing contexts. For instance, when ChatGPT-Agent
is exposed to new domains with evolving policy filters,
R, increases gradually, reflecting heightened safety uncer-
tainty—demonstrating the bound’s responsiveness to real-
time risk evolution.

Cross-Paradigm Comparison

To better understand the practical value of each certification
paradigm, we compare the relative bound tightness and cov-
erage performance across both coding and web browsing
tasks. Table 3 reports aggregated metrics averaged over 20
independent trials per agent and domain.

Table 3: Comparison across certifications (6 = 0.05).

Paradigm Mean R° Avg. Gap Coverage (%) Tightening vs. Hoeffding
Hoeffding Bound 0.144 +0.029 95.7 —

Empirical Bernstein 0.131 +0.016 95.0 44.8%
Conformal 0.128 +0.013 95.1 55.2%

Online Conformal 0.132 +0.017 93.8 41.4%

Analysis. Across all domains, conformal and empirical
Bernstein bounds consistently achieve 40-55% tighter risk
intervals relative to Hoeffding’s baseline while maintaining
nearly nominal 95% coverage. Conformal risk certificates
yield the lowest mean bound (0.128) across agents, reflecting
their adaptive behavior under heterogeneous risk distribu-
tions. Empirical Bernstein remains competitive when sample
variance is low, but degrades slightly in high-variance brows-
ing sessions.

Online conformal certification demonstrates unique advan-
tages in temporal adaptivity. In streaming ChatGPT-Agent
sessions, the smoothed bound R; reacts to distributional
shifts within 10-15 iterations, maintaining coverage above
93%. Interestingly, in periods of stable user interaction, R
converges to within 1.2x of the conformal bound, while
during high-risk phases (e.g., exposure to new web tools or
API schema changes), it inflates adaptively by +0.02—0.03,
signaling increased uncertainty.

Takeaways. Overall, the three paradigms form a spec-
trum of trade-offs: concentration-based methods offer sim-
plicity and analytical transparency; conformal certificates
achieve the tightest and most data-efficient risk quantification;
and online conformal bounds provide real-time adaptability
for non-stationary deployments. Quantitatively, the adaptive
paradigms reduce certified risk by an average of 47 % while
preserving valid coverage—demonstrating their effectiveness
as practical tools for trustworthy deployment of LLM agents.

Efficiency Analysis

We compare the runtime efficiency of all certification
paradigms using batches of n = 1,000 samples for offline

bounds and sliding windows of w = 100 for online certifica-
tion. Experiments are run on an NVIDIA A100 GPU with 16
CPU cores, and times are averaged over 10 trials.

Table 4: Runtime comparison of certification paradigms.

Paradigm Batch Time (s) Per-Step Latency (ms) Complexity
Hoeffding Bound 0.018 — O(n)
Empirical Bernstein 0.026 — O(n)
Conformal 0.091 — O(nlogn)
Online Conformal 0.128 34 O(wlog w)

Discussion. Concentration-based bounds are fastest (<
0.03 s per batch), making them ideal for large-scale offline
audits. Conformal certification introduces moderate overhead
(0.09s) due to quantile computation but remains negligi-
ble relative to model inference. Online conformal certifica-
tion adds minimal latency (= 3 ms per interaction). Overall,
conformal and online methods achieve substantially tighter
bounds at under 7 x runtime cost, well within feasible limits
for continuous agent monitoring.

Related Work

Conformal prediction is a statistical tool to construct the
prediction set with guaranteed prediction coverage (Vovk,
Gammerman, and Saunders 1999; Vovk, Gammerman, and
Shafer 2005; Lei, Robins, and Wasserman 2013; Yang and
Kuchibhotla 2021; Kang et al. 2023, 2024), assuming that
the data is exchangeable. However, conformal prediction
can only provide guarantees for the regression and classifi-
cation tasks and is not directly applicable to the generation
tasks, which are more relevant for LLMs. Conformal risk
controlling methods (Bates et al. 2021; Angelopoulos et al.
2021, 2022; Quach et al. 2023) provide a high-confidence
risk guarantee with the data exchangeability assumption for
any black-box risk functions. We can define a specific risk
function for models and certify a risk upper bound of gen-
erations based on statistics on in-distribution calibration set.
However, the risk guarantee is violated under distribution
shifts at test time. Angelopoulos et al.; Farinhas et al. offer
a valid conformal risk for monotonic risk functions under
distribution shifts, but the monotonicity assumption may not
always hold in practice.

Conclusion

We proposed a unified framework for certified generation risk
control in LLM agents with finite-sample statistical guaran-
tees. By modeling generation risk as a measurable functional
over prompt—output pairs, we developed concentration-based,
conformal, and online conformal paradigms that yield high-
confidence upper bounds on unsafe behavior. Experiments on
coding and web browsing agents show that conformal meth-
ods achieve up to 50% tighter bounds than classical inequal-
ities while preserving valid coverage. These results highlight
certified risk estimation as a practical bridge between theo-
retical reliability and real-world deployment safety. Future
directions include extending to multi-agent and multimodal
systems and enabling adaptive calibration under dynamic
environments.
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