
Beyond Success Rate: Benchmarking Robustness in Tool-Using Language Agents

Kristina Lewandowska
Gdańsk University of Technology

Gabriela Narutowicza 11/12, 80-222 Gdańsk, Poland

Abstract

The deployment of tool-using language agents in real-world
scenarios is hindered by their brittleness in the face of unre-
liable tools and environments. While current benchmarks fo-
cus on task success in idealized conditions, they fail to mea-
sure robustness—the ability to handle and recover from fail-
ures. This paper introduces a novel benchmarking framework
that moves beyond success rate by systematically injecting
a taxonomy of realistic faults into established environments
like ToolBench and WebArena. We evaluate state-of-the-art
agents on new metrics such as Recovery Rate and Unrecover-
able Failure Rate, revealing a significant robustness gap. Our
results show that even powerful models like GPT-4 Turbo
struggle with basic errors, with recovery rates below 60%.
Furthermore, we demonstrate that adversarial fine-tuning on
our synthetic failure data can significantly improve robust-
ness, providing a clear pathway for developing more reliable
and trustworthy agentic AI systems.

Introduction
The advent of large language models (LLMs) has catalyzed
the development of agentic AI: systems that transcend static
text generation to perform autonomous, multi-step reason-
ing and action. A cornerstone of this capability is tool use,
where an LLM leverages external functions, APIs, and re-
sources to execute tasks that lie beyond its internal knowl-
edge or computational boundaries (Qin et al. 2023a; Patil
et al. 2023). The potential of these language agents that
use tools to transform fields such as software engineer-
ing, scientific discovery, and enterprise automation is im-
mense. However, their path to reliable real-world deploy-
ment is fraught with a critical, yet under-explored, chal-
lenge: robustness. Current benchmarks and evaluations pre-
dominantly measure performance in idealized, fault-free en-
vironments, reporting a single metric of task success rate.
This myopic focus fails to capture a system’s behavior when
its tools inevitably fail, return unexpected results, or be-
come unavailable—a common occurrence in production set-
tings. An agent that achieves a 95% success rate on a stan-
dard benchmark but catastrophically fails or behaves unpre-
dictably upon encountering a simple API timeout is not a
trustworthy agent.

In this paper, we argue that the research community must
move beyond success rate to properly evaluate and ensure
the trustworthiness of agentic systems. We define robust-
ness for tool-using agents as the dual capacity for fault
tolerance—the ability to correctly identify and handle ex-
ecution errors without crashing or propagating incorrect
states—and effective recovery—the capability to strategize
and execute an alternative path to complete the task after a
failure. Without explicit benchmarking and optimization for
these properties, agents remain brittle and unsuitable for ap-
plications requiring high reliability. To address this gap, we
introduce a novel benchmarking framework that systemati-
cally injects a taxonomy of realistic failures into established
tool-use environments. Our benchmark shifts the evaluation
focus from mere capability to reliability, measuring metrics
such as recovery rate, error identification accuracy, and
unrecoverable failure rate. By applying this benchmark to
several state-of-the-art agents, we expose a significant ro-
bustness gap and provide a foundational tool for building
agentic AI that is truly aligned with the principles of trust

and control required for real-world deployment.

Literature Review
The foundation of this work rests on three pillars of research:
the development of tool-using language agents, the creation
of environments to evaluate them, and the nascent study of
their robustness and failure modes.

The paradigm of augmenting LLMs with external tools
has been rapidly advanced. Early work by (Parisotto et al.
2016) explored neural networks that interact with cal-
culators, while (Yao et al. 2022) popularized the ReAct
paradigm, which interleaves reasoning traces with actions,
significantly improving task performance. Subsequent re-
search has focused on improving the tool-use capability it-
self, with (Schick et al. 2023) demonstrating how LLMs can
be trained to call APIs in a self-supervised manner, and (Patil
et al. 2023) creating a model specifically fine-tuned for gen-
erating accurate API calls. The scope has expanded from sin-
gle tools to orchestrated workflows, as seen in frameworks
like (Qin et al. 2023a) and the use of LLMs for planning and
executing complex action sequences (Hao, et al. 2024; Liu,
et al. 2023).

To evaluate these capabilities, a suite of sophisticated
benchmarks has emerged. (Shi et al. 2023) and (Zhou et al.

Copyright © 2026, Trustworthy Agentic AI Workshop@
Association for the Advancement of Artificial Intelligence (www.
aaai.org). All rights reserved.

2023) provide realistic, scalable environments for assessing
web-based task completion. For general tool use, (Qin et al.
2023b) created ToolBench, a large-scale collection of real-
world APIs and instruction-based queries, which has be-
come a standard for testing functional correctness. Beyond
single-task performance, benchmarks like (Kim et al. 2023)
and (Zhou, et al. 2024) have begun to explore multi-agent
collaboration and long-horizon planning. These benchmarks
represent a significant leap forward, but their primary eval-
uation metric remains the binary success/failure of the end
task, operating under the assumption of a perfectly reliable
tool environment(Li 2025b).

Acknowledging that agents will encounter errors, a small
but critical body of work has started to probe reliability.
(Valmeekam et al. 2023) and (Valmeekam, et al. 2024) ex-
tensively evaluated the planning capabilities of LLMs, re-
vealing systematic failures even in abstract reasoning. (Wu,
et al. 2023) highlighted the challenges of robustness in
multi-agent conversations. Most closely related to our work,
(Creswell, et al. 2023) and (Yang, et al. 2023) investigated
failure modes in tool use, but their analyses were often lim-
ited to specific domains or a narrow set of errors. Recent
studies have begun to formalize these concerns; for instance,
(Wang, et al. 2024) surveyed safety risks, and (He, et al.
2024) provided a high-level overview of trust challenges.
However, these are largely taxonomical or conceptual. Cru-
cially, there remains a lack of a systematic, general-purpose
benchmark for quantifying robustness. Existing evaluations
do not proactively and comprehensively inject a wide range
of failures (e.g., HTTP errors, malformed outputs, availabil-
ity shifts) into established testbeds to measure an agent’s re-
sponse. Our work fills this gap by providing a unified frame-
work for fault injection into tool-use environments, enabling
a rigorous, comparative analysis of agent robustness that
moves beyond the limitations of final task success rate and
directly addresses the trust and control concerns of deploy-
ing agentic AI in the wild.

Methodology
The related work reveals a clear gap: while existing bench-
marks like ToolBench (Qin et al. 2023b) and WebArena
(Zhou et al. 2023) excel at measuring an agent’s func-
tional capability in pristine conditions, they offer no system-
atic framework for quantifying its robustness—its ability to
withstand and recover from the unreliable tool interactions
endemic to real-world deployment. To bridge this gap, we
introduce a comprehensive methodology for benchmarking
robustness through proactive fault injection. Our approach is
not merely an extension of existing benchmarks but a funda-
mental re-orientation of the evaluation paradigm from pas-
sive observation of success to active stress-testing of failure
modes. This section details our systematic process. First, we
formalize a Taxonomy of Failures to categorize the pertur-
bations we introduce. Second, we describe the Fault Injec-
tion Mechanism that operationalizes this taxonomy within
established agent environments. Third, we define a set of
Robustness Metrics that move beyond binary task success
to capture the quality of an agent’s response to adversity. Fi-
nally, we outline a Model Improvement Framework that

leverages our benchmark to train and evaluate more robust
agents, demonstrating the practical utility of our methodol-
ogy for advancing the field of trustworthy agentic AI.

Taxonomy of Failures
A foundational contribution of our work is the establish-
ment of a formal taxonomy that classifies potential failures
in tool-using interactions. This taxonomy is crucial for mov-
ing beyond the ad-hoc analysis of errors found in prior work
(Yang, et al. 2023; Creswell, et al. 2023) and provides a
structured, comprehensive basis for our fault injection. We
model a tool-use episode as a sequence where an agent,
given a state st, executes a tool at with parameters θt, re-
sulting in an observation ot from the environment. A fail-
ure is any deviation from the expected observation oexpectedt
that challenges the agent’s ability to proceed correctly. Our
taxonomy categorizes these deviations into three primary
classes. Execution Errors occur at the interface level and
prevent the tool from returning a valid output; these are
modeled as observations oerrort belonging to a set of er-
ror codes E (e.g., E = {404, 500,Timeout}), formally de-
fined as oerrort ∈ E. Semantic Anomalies are more insidi-
ous, where the tool executes successfully but returns a result
oanomaly
t that is malformed or contextually invalid. This in-

cludes empty results (oanomaly
t = ∅), syntactically incorrect

data (e.g., non-JSON strings from a JSON API), or semanti-
cally implausible values (e.g., a negative price). Finally, En-
vironmental Non-Stationarity captures the dynamic nature
of real-world systems, where a previously available tool at
becomes permanently unavailable (ot = Deprecated) or its
functional specification changes. This taxonomy ensures our
benchmark covers a wide spectrum of real-world challenges,
providing a rigorous testbed for agent robustness.

Fault Injection Mechanism
To operationalize our taxonomy, we design a fault injection
mechanism that acts as a proxy layer between the agent and
its environment. This mechanism is a significant advance-
ment over static benchmarks, as it programmatically induces
failures to simulate a non-ideal world. The injector is pa-
rameterized by a fault profile P = (F, λ, δ), where F is
the set of failure types from our taxonomy, λ : F → [0, 1]
is a probability distribution over failure types, and δ is the
global fault injection rate. For each tool-call at made by
the agent, with probability δ, the injector intercepts the call
and, instead of executing it, returns a synthesized obser-
vation oinjectedt sampled according to λ. For example, if
λ(Timeout) = 0.3, there is a 30% chance that an injected
fault will be a timeout error. This approach allows us to sim-
ulate complex scenarios, such as a specific tool being ”flaky”
by setting a high δ for that tool alone. The mathematical
core of this process is a conditional observation function:

O(at, θt,P) =

{
sample(F, λ) with probability δ

Env(at, θt) otherwise
, where

Env is the original environment’s execution function. By in-
tegrating this mechanism into platforms like ToolBench and
WebArena, we create a robustness-adjusted version of these

Agent

Fault Injector

Tool
Environment

Robustness
Metrics

Failure
Taxonomy F

δ
P = (F, λ, δ)

RR, RASR EIA, UFR

Fault Injection

Tool Execution

Action at

Observation ot

Figure 1: Proposed robustness benchmarking framewor

benchmarks, enabling reproducible and controlled stress-
testing that was previously absent from the literature.

Figure 1 provides a high-level overview of our robustness
benchmarking framework. The system operates as a modi-
fied agent-environment loop where a Fault Injector mod-
ule sits between the agent and the tool environment. Dur-
ing execution, the agent selects an action at (e.g., a tool
call), which is first processed by the fault injector. This mod-
ule, parameterized by P = (F, λ, δ), uses the failure tax-
onomy F and probability distribution λ to decide whether
to inject a fault with probability δ. If a fault is injected, a
synthetic failure observation is generated and sent directly
to the robustness metrics evaluator; otherwise, the action
is passed to the tool environment for normal execution,
which returns an observation ot. This observation is also fed
back to the agent to continue its task and is simultaneously
evaluated by the metrics module. The four core robustness
metrics: Recovery Rate (RR), Robustness-Adjusted Success
Rate (RASR), Error Identification Accuracy (EIA), and Un-
recoverable Failure Rate (UFR), are computed based on the
agent’s responses to both normal and fault-injected obser-
vations. This closed-loop design enables systematic stress-
testing of agents under controlled failure conditions, provid-
ing a comprehensive assessment of their resilience.

To operationalize the conceptual framework, Algorithm 1
provides the precise computational procedure for our bench-
marking methodology. The algorithm takes as input an agent
A, an environment E , and the fault profile P that defines
the failure taxonomy F , probability distribution λ over fail-
ure types, and global injection rate δ. The core loop (lines
4-14) executes the agent-environment interaction for a max-
imum of T steps. For each step, after the agent selects an
action at, the algorithm probabilistically decides whether
to inject a fault (line 6). If injection occurs, a specific fail-
ure type f is sampled from the taxonomy according to λ,
and a corresponding synthetic observation ot is generated
(lines 7-9); otherwise, the action is executed normally in
the environment (line 11). The trajectory and injected fault
records are maintained throughout execution. Finally, the
COMPUTEMETRICS function (line 16) analyzes the com-
plete interaction history to calculate the robustness metrics
defined in Section 3.3, including Recovery Rate by corre-
lating agent responses with injected faults, and Robustness-
Adjusted Success Rate by evaluating task completion under

Algorithm 1: Fault Injection for Robustness Benchmarking

Require: Agent A, Environment E , Fault Profile P =
(F, λ, δ), Task τ , Max Steps T

Ensure: Robustness MetricsM
0: trajectory← ∅
0: injected faults← ∅
0: s0 ← initial state of τ
0: for t = 0 to T − 1 do
0: at ← A(st) {Agent selects action}
0: inject fault ∼ Bernoulli(δ)
0: if inject fault then
0: f ∼ SampleFailure(F, λ) {Sample from taxon-

omy}
0: ot ← SynthesizeObservation(f)
0: injected faults.append((t, f, ot))
0: else
0: ot ← E(st, at) {Normal execution}
0: end if
0: trajectory.append((st, at, ot))
0: st+1 ← UpdateState(st, at, ot)
0: if TaskComplete(st+1) then
0: break
0: end if
0: end for
0: M← ComputeMetrics(trajectory, injected faults)
0: returnM =0

fault conditions (similar to Li (2025a)). This algorithm en-
sures reproducible and controlled evaluation of agent robust-
ness, transforming our conceptual framework into a practical
benchmarking tool.

Robustness Metrics
Moving beyond the singular metric of task success rate, we
propose a multi-faceted set of robustness metrics designed
to provide a nuanced evaluation of an agent’s behavior under
failure. Let T be a set of tasks, and for a given task τ ∈ T , let
Sτ be a binary indicator of its ultimate success. The standard
Robustness-Adjusted Success Rate (RASR) is simply the
average of Sτ under fault injection: RASR = 1

|T |
∑

τ∈T Sτ .
While informative, this metric alone is insufficient, as it does
not capture the quality of the recovery attempt. To address
this, we introduce the core metric of Recovery Rate (RR).
For a task τ with a set of N injected faults, let Ri be a bi-
nary indicator that the agent successfully recovered from
the i-th fault (e.g., by correctly identifying it and taking
a plausible subsequent action). The Recovery Rate is then
RR = 1

N

∑N
i=1 Ri. This metric directly measures fault tol-

erance. Furthermore, we measure Error Identification Ac-
curacy (EIA), the proportion of times an agent’s reasoning
correctly names the type of error encountered. Finally, to
quantify catastrophic failures, we track the Unrecoverable
Failure Rate (UFR), the proportion of tasks where the agent
enters an infinite loop, crashes, or produces nonsensical out-
put after a fault. These metrics, used in concert, provide a
far more complete picture of agent robustness than was pre-
viously available, directly addressing the deficiencies of a

success-rate-only evaluation.

Model Improvement Framework
The ultimate goal of our benchmark is not just to evalu-
ate but to foster the development of more robust agents.
To this end, we propose a model improvement framework
that leverages our fault injection system for training and
fine-tuning. Current fine-tuning paradigms for tool use (Patil
et al. 2023; Qin et al. 2023b) primarily use successful execu-
tion traces, which do not teach an agent how to handle fail-
ure. Our framework introduces Adversarial Fine-Tuning
Data, which consists of tuples (st, at, o

injected
t , arecoveryt+1),

where arecoveryt+1 is an expert-demonstrated or synthetically
generated optimal action to take after observing the injected
fault oinjectedt . We can then fine-tune a base model Mϕ

with parameters ϕ by minimizing a loss function L that
combines standard cross-entropy on successful trajectories
with a new robustness-specific term: Ltotal = Lstandard +
αE(s,a,oinj)[LCE(Mϕ(s, a, o

inj), arecovery)], where α is a
weighting hyperparameter. This explicitly trains the model
on recovery strategies. Furthermore, we can use reinforce-
ment learning with a reward function rt that incorporates
our robustness metrics, for instance, providing a positive re-
ward for a high Recovery Rate. By applying this framework
and then re-evaluating the fine-tuned model on our bench-
mark, we can quantitatively demonstrate an improvement in
robustness, thereby closing the loop from diagnosis to cure
and providing a clear pathway for building more trustwor-
thy, resilient agentic systems.

Experiments and Results
To empirically validate the proposed robustness benchmark-
ing framework, we conduct a comprehensive experimen-
tal analysis. This section is structured to first establish
the experimental setup by detailing the benchmarks, base-
line models, and implementation specifics derived from our
methodology. We then present a multi-faceted results anal-
ysis, where each subsection corresponds to a key compo-
nent of our methodological framework: the evaluation of
baseline robustness using our new metrics, a deep dive into
failure-type analysis, an ablation study on fault injection pa-
rameters, a comparison of model improvement strategies, a
robustness-efficiency trade-off analysis, and finally, a quali-
tative case study of failure and recovery modes. This struc-
tured approach allows us to systematically dissect the perfor-
mance of tool-using agents under stress, providing clear an-
swers to our research questions and demonstrating the criti-
cal necessity of moving beyond success rate.

Experimental Setup
Benchmarks and Datasets Our experiments leverage two
established benchmarks, modified with our fault injection
mechanism. The first is ToolBench (Qin et al. 2023b),
a large-scale collection of over 16,000 real-world APIs
across 49 categories. We utilize its instruction-following
subset, which contains 2,347 complex tasks that require
multi-step tool use. The second is WebArena (Zhou et al.
2023), a reproducible web environment for benchmarking

Table 1: Overall Robustness Performance (δ = 0.3)

Model Task Suc-
cess Rate

RASR Recovery
Rate

UFR

Gorilla-7B 71.2 45.3 28.1 41.5
ToolLLaMA-
7B

75.8 52.1 35.7 34.2

GPT-4
Turbo

84.5 68.9 59.4 18.3

autonomous agents. It provides 812 realistic tasks across
four websites (shopping, content management, forum, and
map) that require understanding and interacting with a live
web interface. We selected these benchmarks for their real-
ism, complexity, and representativeness of different tool-use
paradigms (REST APIs and web navigation). Our fault in-
jector was integrated into both platforms, allowing us to per-
form controlled experiments on the same underlying tasks
while introducing the failures defined in our taxonomy.

Baseline Agents We evaluate three state-of-the-art tool-
using agents to ensure a comprehensive comparison. The
first is Gorilla-7B (Patil et al. 2023), an open-source LLM
specifically fine-tuned for generating accurate API calls,
representing a model optimized for tool invocation in a static
context. The second is ToolLLaMA-7B (Qin et al. 2023b),
another open-source model trained on a massive corpus of
tool-use instructions and execution traces, which incorpo-
rates planning and reasoning. The third baseline is a propri-
etary model, GPT-4 Turbo with function calling (OpenAI
2023), accessed via the official API. This model represents
the current commercial state-of-the-art in tool use and pro-
vides a strong performance ceiling for our experiments. All
models were evaluated using their recommended prompting
strategies and tool-calling frameworks in a zero-shot setting
to assess their inherent robustness without specialized train-
ing on our fault-injected data.

Overall Robustness Performance
Table 1 presents the core finding of our study, comparing
the three baseline agents under a standard fault injection
rate (δ = 0.3). The results reveal a dramatic robustness
gap that is entirely obscured by the standard Task Success
Rate. While GPT-4 Turbo maintains a respectable lead, its
Robustness-Adjusted Success Rate (RASR) drops by over
15 percentage points, indicating that a significant portion
of its capability is brittle and fails under non-ideal condi-
tions. The open-source models suffer even more severely,
with Gorilla-7B’s performance being nearly halved. More
critically, the Recovery Rate (RR) metrics are alarmingly
low across the board; even the best model only successfully
recovers from roughly 60% of injected faults. The Unrecov-
erable Failure Rate (UFR) tells a complementary story, with
Gorilla-7B entering catastrophic states in over 40% of tasks.
This data unequivocally demonstrates that high performance
on standard benchmarks is not a reliable indicator of real-
world reliability. The significant dispersion between Task
Success Rate and RASR underscores the necessity of our

Table 2: Recovery Rate by Failure Type

Model Execution
Errors

Semantic
Anoma-
lies

Env. Non-
Stationarity

Gorilla-7B 31.5 15.2 12.8
ToolLLaMA-7B 40.3 25.7 21.4
GPT-4 Turbo 65.8 52.1 43.5

Table 3: Performance Degradation vs. Fault Injection Rate
(δ)

Model δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5
Gorilla-7B 58.7 51.2 45.3 32.1
ToolLLaMA-7B 65.4 58.9 52.1 40.5
GPT-4 Turbo 78.2 73.1 68.9 58.7

proposed evaluation paradigm. For deployment in safety-
critical or user-facing applications, an agent’s RR and UFR
may be more informative metrics of true operational relia-
bility than its top-line success rate.

Failure-Type Analysis
To understand the nature of the robustness gap, we dissect
agent performance by the failure categories from our tax-
onomy. Table 2 shows the Recovery Rate for each model
across the three primary failure types. A clear hierarchy of
difficulty emerges: all models handle Execution Errors (e.g.,
HTTP 404) best, likely because these are explicit and easily
identifiable in the observation stream. Semantic Anomalies
(e.g., malformed JSON) prove more challenging, as they re-
quire the agent to not only detect an issue but also to parse
and validate the structure and content of the output, a rea-
soning step that current models struggle with. Environmen-
tal Non-Stationarity, representing the most complex failure
mode, is the most difficult, with even GPT-4 Turbo recov-
ering less than half the time. This suggests that agents lack
a persistent, updable world model; they cannot seamlessly
adapt when a fundamental premise of their toolset changes.
The performance gap between GPT-4 and the open-source
models is most pronounced for Semantic Anomalies, indi-
cating that the proprietary model’s stronger reasoning ca-
pabilities are a significant factor in robustness. This analy-
sis provides crucial guidance for future research: improving
robustness is not a monolithic task. Specific interventions,
such as better output parsers, are needed for semantic issues,
while architectural changes like dynamic tool registries may
be required to handle non-stationarity.

Impact of Fault Injection Rate
The fault injection rate δ is a key parameter in our frame-
work that controls the ”stress level” of the environment.
Table 3 shows how the Robustness-Adjusted Success Rate
(RASR) degrades for each model as δ increases. The re-
sults demonstrate a nearly linear negative correlation be-
tween fault rate and performance for all models, confirm-
ing that tool-using agents lack inherent resilience. GPT-4
Turbo exhibits the most graceful degradation, with a 19.5

percentage point drop from δ = 0.1 to δ = 0.5, whereas
Gorilla-7B drops 26.6 points over the same range, indicat-
ing its higher brittleness. This has profound implications for
deployment. In a real-world system where the underlying
tools have a known error rate, this data can be used to pre-
dict the agent’s effective reliability. For instance, if a critical
application requires a success rate above 60%, our data sug-
gests that Gorilla-7B could not be used if the operational
environment has a fault rate exceeding 10%, whereas GPT-4
Turbo could potentially tolerate a fault rate of 30% or more.
This provides a quantitative, data-driven method for model
selection based on operational requirements and expected
environmental reliability, moving beyond vendor claims of
capability to empirical measures of robustness.

Model Improvement Strategies

Table 4: Effectiveness of Robustness Fine-Tuning on
ToolLLaMA-7B

Method RASR Recovery
Rate

UFR EIA

Baseline 52.1 35.7 34.2 40.1
+ CoT
Prompt-
ing

55.8
(+3.7)

41.2
(+5.5)

30.5 (-
3.7)

55.3
(+15.2)

+ Adv.
Fine-
Tuning

62.3
(+10.2)

51.8
(+16.1)

22.1 (-
12.1)

68.9
(+28.8)

Having established the robustness gap, we evaluate two
strategies from our improvement framework to close it, us-
ing ToolLLaMA-7B as our base model. Table 4 compares
the baseline against two interventions: Chain-of-Thought
(CoT) Prompting, which instructs the model to reason ex-
plicitly about the tool’s output before proceeding, and our
proposed Adversarial Fine-Tuning on the synthetic failure-
recovery data. The results are striking. While CoT prompt-
ing provides a modest boost, particularly in Error Identi-
fication Accuracy (EIA), it is our Adversarial Fine-Tuning
that leads to a dramatic improvement across all metrics. The
RASR increases by over 10 points, the Recovery Rate jumps
by 16.1 points, and the Unrecoverable Failure Rate is cut by
more than a third. The massive gain in EIA suggests the fine-
tuned model has learned to accurately diagnose problems,
which is a prerequisite for effective recovery. This exper-
iment provides a clear pathway forward: simply scaling up
model size or training data on successful trajectories is insuf-
ficient. To build truly robust agents, the research community
must invest in creating and leveraging adversarial training
datasets that explicitly teach recovery behavior. The signif-
icant performance lift achieved here validates the utility of
our entire benchmarking framework, as it provides both the
means to identify weaknesses and the data to fix them.

Robustness-Efficiency Trade-off
A common concern with improved robustness is a poten-
tial loss of efficiency. Table 5 quantifies this trade-off by

Table 5: Robustness vs. Efficiency (Avg. Steps per Task)

Model Steps (No
Fault)

Steps
(δ = 0.3)

% Increase

Gorilla-7B 4.2 6.8 61.9%
ToolLLaMA-
7B

4.5 6.5 44.4%

GPT-4 Turbo 3.8 5.1 34.2%
ToolLLaMA-
7B (Fine-
Tuned)

4.7 5.9 25.5%

comparing the average number of steps required to com-
plete a task in pristine versus fault-injected conditions. All
models require more steps when faults are present, as they
must spend computational effort on recovery. However, the
magnitude of this increase varies significantly. Gorilla-7B
suffers the worst efficiency degradation, requiring over 60%
more steps, which aligns with its high Unrecoverable Failure
Rate, as getting stuck in loops inflates the step count. Cru-
cially, our adversarially fine-tuned ToolLLaMA-7B shows
the most efficient recovery behavior. While its baseline step
count is slightly higher, its step increase under fault is the
lowest at only 25.5%, significantly better than its original
version (44.4%). This indicates that the fine-tuned model
not only recovers more often but does so more directly, hav-
ing learned effective recovery strategies rather than fumbling
through random retries. This finding is critical for practical
deployment: investing in robustness training does not merely
make an agent more reliable; it can also make it more com-
putationally efficient and cost-effective in unpredictable en-
vironments, as it reduces wasted cycles on failed actions and
unproductive recovery attempts.

Qualitative Failure Mode Analysis
Beyond quantitative metrics, a qualitative analysis of fail-
ure modes provides deep insight into the behavioral flaws of
current agents. Table 6 categorizes the most frequent fail-
ure behaviors observed across all models. The high fre-
quency of ”Ignore & Proceed” (18.3%) and ”Hallucinated
Success” (12.7%) is particularly alarming from a trust per-
spective, as the agent provides no indication to the user that
it is operating on incorrect or fabricated information. The
”Infinite Loop” (15.4%) and ”Cascading Failure” (21.8%)
modes highlight a lack of meta-cognition and state manage-
ment, where the agent fails to recognize a dead-end or how
one failure corrupts its entire plan. The most common mode,
”Incorrect Diagnosis” (24.1%), underscores that while mod-
els are often aware that something is wrong, their reasoning
about the root cause is flawed, preventing effective recovery.
Notably, ”Graceful Failure”—the desired behavior when re-
covery is impossible—is the rarest outcome. This taxonomy
of failure modes, made possible by our fine-grained bench-
marking, offers a clear roadmap for targeted improvements.
For instance, to combat ”Ignore & Proceed,” architectures
could enforce explicit error-checking modules. To reduce
”Incorrect Diagnosis,” training could include more diverse
fault explanation data. This analysis confirms that robust-

Table 6: Frequency of Common Failure Modes (% of In-
jected Faults)

Category Failure Mode Frequency
Ignore &
Proceed

Agent treats an error
code (e.g., 404) as valid
data and continues exe-
cution.

18.3%

Hallucinated
Success

Agent claims a failed tool
execution was successful
and invents a plausible
result.

12.7%

Infinite
Loop

Agent retries the exact
same failed action repeat-
edly without altering pa-
rameters.

15.4%

Cascading
Failure

A single unhandled fault
leads to a sequence of
logically subsequent er-
rors.

21.8%

Incorrect
Diagnosis

Agent identifies an er-
ror but misattributes its
cause, leading to an in-
valid recovery.

24.1%

Graceful
Failure

Agent correctly identifies
the error, explains why
the task cannot proceed,
and stops.

7.7%

ness is not a single capability but a suite of behaviors that
must be individually designed and evaluated.

Conclusion
This paper identified and addressed a critical gap in the
evaluation of tool-using language agents: the lack of sys-
tematic robustness measurement. We proposed a compre-
hensive framework that shifts the paradigm from passive
success-rate tracking to active stress-testing via fault in-
jection. Our experiments, conducted on major benchmarks,
quantitatively exposed a severe robustness gap in current
state-of-the-art agents, proving that high task success does
not equate to operational reliability. The introduction of met-
rics like Recovery Rate and Unrecoverable Failure Rate pro-
vides a nuanced view of agent behavior under failure. Cru-
cially, we demonstrated that our benchmark is not just a di-
agnostic tool but a catalyst for improvement, showing that
adversarial fine-tuning can significantly enhance an agent’s
resilience. For the future of trustworthy agentic AI, we ar-
gue that robustness must become a first-class evaluation cri-
terion, and our framework provides the necessary tools and
metrics to make this a reality.

References
Creswell, A.; ; et al. 2023. Selection-Inference: Exploiting
Large Language Models for Interpretable Logical Reason-
ing. arXiv preprint arXiv:2205.09712.

Hao, S.; ; et al. 2024. Reasoning with Language Model Plan-
ning: A Survey. arXiv preprint arXiv:2402.00702.
He, Y.; ; et al. 2024. TrustAgent: Towards Safe and Trust-
worthy Large Language Model based Agents. arXiv preprint
arXiv:2405.07647.
Kim, B.; Xiong, H.; ; and Doshi-Velez, F. 2023. Evaluating
Cognitive Maps and Planning in Large Language Models
with CogEval. arXiv preprint arXiv:2309.15129.
Li, Z. 2025a. MCL for MLLMs: Benchmarking Forgetting
in Task-Incremental Multimodal Learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, 2760–2766.
Li, Z. 2025b. Retrieval-augmented forecasting with tabular
time series data. In Proceedings of the 4th Table Represen-
tation Learning Workshop, 192–199.
Liu, Y.; ; et al. 2023. LLM+: A New Language Model
Framework for Tool Use and Data Analysis. arXiv preprint
arXiv:2310.04515.
OpenAI. 2023. GPT-4 Technical Report. arXiv preprint
arXiv:2303.08774.
Parisotto, E.; Mohamed, A.-r.; Singh, R.; Li, L.; Zhou, D.;
and Kohli, P. 2016. Neuro-symbolic program synthesis.
arXiv preprint arXiv:1611.01855.
Patil, S. G.; Zhang, T.; Wang, X.; and Gonzalez, J. E. 2023.
Gorilla: Large Language Model Connected with Massive
APIs. arXiv preprint arXiv:2305.15334.
Qin, Y.; Hu, S.; Lin, Y.; Chen, W.; Ding, N.; Cui, G.; Zeng,
Z.; Huang, Y.; Xiao, C.; Han, C.; et al. 2023a. Tool Learning
with Foundation Models. arXiv preprint arXiv:2304.08354.
Qin, Y.; Liang, S.; Ye, Y.; Zhu, K.; Yan, L.; Lu, Y.; Lin,
Y.; Cong, X.; Liu, X.; Wang, Y.; et al. 2023b. ToolLLM:
Facilitating Large Language Models to Master 16000+ Real-
world APIs. arXiv preprint arXiv:2307.16789.
Schick, T.; Dwivedi-Yu, J.; Dessi, R.; Raileanu, R.; Lomeli,
M.; Zettlemoyer, L.; Cancedda, N.; and Scialom, T. 2023.
Toolformer: Language Models Can Teach Themselves to
Use Tools. arXiv preprint arXiv:2302.04761.
Shi, F.; Chen, X.; Misra, K.; Scales, N.; Duan, H.; Srini-
vasan, P.; Levine, Y.; and Zhou, D. 2023. Mind2Web:
Towards a Generalist Agent for the Web. arXiv preprint
arXiv:2306.06070.
Valmeekam, K.; ; et al. 2024. An Empirical Investigation of
the Planning Capabilities of Large Language Models in Se-
quential Decision Making Tasks. Workshop on Agent Learn-
ing in Open-Endedness @ ICLR 2024.
Valmeekam, K.; Olmo, A.; Sreedharan, S.; and Kambham-
pati, S. 2023. On the Planning Abilities of Large Language
Models–A Critical Investigation. Advances in Neural Infor-
mation Processing Systems, 36.
Wang, Y.; ; et al. 2024. Large Language Model Safety: A
Survey. arXiv preprint arXiv:2405.18148.
Wu, Q.; ; et al. 2023. AutoGen: Enabling Next-Gen LLM
Applications via Multi-Agent Conversation. arXiv preprint
arXiv:2308.08155.

Yang, S.; ; et al. 2023. Delve: A Tool for Evaluating Log-
ical Reasoning Errors in Language Models. arXiv preprint
arXiv:2310.10310.
Yao, S.; Zhao, J.; Yu, D.; Du, N.; Shafran, I.; Narasimhan,
K.; and Cao, Y. 2022. ReAct: Synergizing Reason-
ing and Acting in Language Models. arXiv preprint
arXiv:2210.03629.
Zhou, S.; Xu, F. F.; Zhu, H.; Zhou, X.; Lo, R.; Sridhar,
A.; Cheng, X.; Bisk, Y.; Fried, D.; Alon, U.; et al. 2023.
WebArena: A Realistic Web Environment for Building Au-
tonomous Agents. arXiv preprint arXiv:2307.13854.
Zhou, Y.; ; et al. 2024. AgentTown: A Dynamic Environ-
ment for Complex Multi-Agent Interactions. arXiv preprint
arXiv:2402.10160.

