A Collaborative Multi-Agent Framework for Jailbreaking with RL-Based
Dynamic Prompting

Azka Ikramullah', Kyunghyun Lee?, Abdul Majeed?, and Seong Oun Hwang?*

! Department of IT Convergence Engineering, Gachon University, South Korea
202540395 @gachon.ac.k r
2 Department of Computer Engineering, Gachon University, South Korea
kyunghyunlee @ gachon.ac.kr, sohwang @ gachon.ac.kr
3 Secure Cyber Systems Research Group, WMG, University of Warwick, Coventry, CV4 7AL, UK
Abdul.Majeed @warwick.ac.uk

Abstract

Evaluating large language models (LLMs) under adversar-
ial prompting remains difficult: heuristic and genetic red-
teaming pipelines require heavy hand-tuning and are query-
inefficient, while recent reinforcement learning based at-
tacks often optimize sparse or binary rewards (e.g., pass/-
fail, cosine similarity), yielding unstable training and low
diversity. In this paper, we present a rating-based adver-
sarial RL framework that formulates jailbreak discovery as
dense-reward optimization. The proposed framework closes
the loop among (i) a Soft Actor—Critic (SAC) agent attacker
with hybrid discrete—continuous actions (operator family +
style sliders), (ii) a controllable rewriter LLM that preserves
intent while injecting surface diversity and stealth, and (iii)
a calibrated judge LLM that assigns five absolute ratings—
Success, Stealth, Novelty, Efficiency, Impact. A curriculum-
weighted aggregation converts these ratings into a continuous
reward, and stratified replay, early-exit, and de-duplication
further improve sample and query efficiency. We instantiate
the judge as LLaMA-3-Instruct and the rewriter as Yi-9B, and
evaluate across three target models (LLaMA-3, Qwen-2.5-
7B, Mistral-7B) using the SORRY-Bench dataset for train-
ing seeds/priors and the out-of-distribution harmful subset
of the JailbreakBench dataset for testing. Empirically, our
framework achieves up to a 15% higher attack success rate
while maintaining greater prompt novelty and stealth. These
results indicate that dense, interpretable rating signals paired
with off-policy optimization provide a scalable foundation for
safety-aligned, query-efficient jailbreak evaluation.

Introduction

Large language models (LLMs) are increasingly deployed as
agentic systems—autonomous entities that plan, reason, and
act across multiple turns. LLM-based multi-agent frame-
works further highlight the shift to coordinated agentic ar-
chitectures (Hong et al. 2023). As these systems gain au-
tonomy, maintaining trust, robustness, and verifiability be-
comes a growing challenge: minor changes in phrasing or
dialogue context can still bypass alignment safﬁlguards and
trigger unsafe behavior, a phenomenon HoWnvas Jjailbreak-
ing (Wei et al. 2023; Charan, Sun, and Shen 2023). Despite

substantial progress in alignment, recent studies confirm that
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even modern models can be manipulated through paraphras-
ing, role-play, or encoded instructions (Chao et al. 2023; Liu
et al. 2024; Yu et al. 2024), demonstrating that safety fine-
tuning alone is insufficient for reliable control.

Early red-teaming pipelines relied on heuristic or genetic
mutation. PAIR (Chao et al. 2023), AutoDAN (Liu et al.
2024), and LLMFuzzer (Yu et al. 2024) exposed weak-
nesses via iterative substitution or stochastic search, but suf-
fered from high query cost and poor adaptability. Gradient-
based methods such as GCG (Zou et al. 2023) improved
single-turn efficiency yet required access to model log-
its. Later, multi-turn attacks like Crescendo (Russinovich,
Salem, and Eldan 2024) and the AAAI-25 attention-shifting
analysis (Du et al. 2025) revealed that adversaries can stage
dialogue histories to shift attention away from harmful to-
kens, dramatically increasing attack success under limited
budgets.

To standardize assessment, JailbreakBench (Chao
et al. 2024) provides harmful-category taxonomies, while
SORRY-Bench (Xie et al. 2024) measures refusal behavior.
However, most attack pipelines that operate on these
benchmarks still optimize using sparse binary signals (suc-
cess/failure or refusal keywords) and on-policy algorithms
such as PPO. RL-based approaches like RLBreaker and
RL-JACK (Chen, Kang, and Li 2024; Chen et al. 2024)
frame jailbreak discovery as sequential decision-making
but remain limited by single-objective reward functions,
unstable credit assignment, and lack of diversity control.
Recent extensions ( PASS, xJailbreak, LLMStinger) explore
richer feedback but still rely on on-policy updates or narrow
mutator sets, restricting scalability to complex, agentic
scenarios (Wang et al. 2025; Lee et al. 2025; Jha, Arora,
and Ganesh 2025).

To resolve the above cited challenges, we propose a
rating-based RL framework that replaces binary feedback
with dense, interpretable supervision. The proposed frame-
work forms a closed triad among: (i) a Soft Actor—Critic
(SAC) agent attacker that selects hybrid actions—discrete
operator families (translation, encoding, role-play) plus con-
tinuous style sliders (length, temperature, persona); (ii) a
controllable rewriter LLM that generates fluent, stealthy
paraphrases without changing intent; and (iii) a calibrated



judge LLM that assigns five absolute ratings—Success,
Stealth, Novelty, Efficiency, and Impact. A simple curricu-
lum emphasizes stealth and novelty early, then shifts to-
ward success and impact, creating a dense reward land-
scape that stabilizes off-policy learning. Stratified replay
preserves rare high-value experiences, while early-exit and
de-duplication rules improve query efficiency. Training one
target at a time ensures stationarity and clear cost account-
ing. Concretely, we instantiate the judge as LLaMA-3-
Instruct and the rewriter as Yi-9B (Al@Meta 2025; 01.AI
2024). We evaluate across three target models—LLaMA-
3, Qwen-2.5-7B-Instruct, and Mistral-7B-Instruct using
SORRY-Bench dataset for training seeds/priors and the out-
of-distribution harmful subset of JailbreakBench dataset for
testing (Al@Meta 2025; Qwen Team 2025; Mistral A12023;
Chao et al. 2024; Xie et al. 2024). Our major contributions
are as follows:

e RL framework with three components. We propose a
novel target-in-the-loop RL framework composed of (i) a
Soft Actor—Critic (SAC) agent attacker, (ii) a controllable
rewriter LLM, and (iii) a calibrated judge LLM, with tar-
get evaluation harness that reports pass-through and post-
guard ASR under matched budgets.

* Dense multi-aspect feedback. The judge yields five rat-
ings (Success, Stealth, Novelty, Efficiency, Impact) that
we normalize and curriculum-weight into a dense reward
to stabilize learning and balance objectives. For fair com-
parison with prior work, we report ASR as the primary
metric; the additional metrics are newly introduced here,
logged in our release, and not used for cross-paper com-
parisons.

* Query-efficient off-policy learning. Off-policy SAC
with experience reuse, stratified replay, early-exit, and
hash-based de-duplication reduces rollout cost and pre-
vents mode collapse compared to on-policy pipelines,
yielding higher success at lower query budgets while
maintaining novelty and stealth.

Related Work

Heuristic, gradient, and evolutionary jailbreaks. Early jail-
break studies (2023-2024) focused on heuristic or mutation-
based red teaming. PAIR (Chao et al. 2023) refined ad-
versarial prompts using another LLM in an iterative loop,
while AutoDAN (Liu et al. 2024) introduced stochastic mu-
tation operators to evade safety filters. LLMFuzzer (Yu
et al. 2024) automated mutation and evaluation through a
fuzzing framework, exposing vulnerabilities with high query
cost and limited transferability. Meanwhile, GCG (Zou et al.
2023) proposed a gradient-based approach to craft transfer-
able jailbreak strings but requires access to model logits/-
gradients (gray-/white-box), reducing applicability to black-
box and multi-turn settings. Although these systems effec-
tively revealed weaknesses in LLMs, they rely on static mu-
tators or internal signals, limiting scalability.

Reinforcement learning—based jailbreaking. The introduc-
tion of RL reframed jailbreak discovery as a sequential de-
cision problem. Work on preference-based RL (e.g., RL

from human feedback) provides a foundational perspec-
tive on richer reward signals(Christiano et al. 2017). RL-
Breaker (Chen, Kang, and Li 2024) and RL-JACK (Chen
et al. 2024) trained on-policy PPO agents with binary or
cosine-similarity rewards—improving over heuristics yet in-
curring high rollout cost and unstable credit assignment
under sparse feedback. This mirrors foundational work
in reward-modelled RL from human preferences (Chris-
tiano et al. 2017). Subsequent efforts explored richer or
more structured rewards: PASS (Wang et al. 2025) for-
malized prompt generation as semantic composition; xJail-
break (Lee et al. 2025) incorporated representation-guided
rewards for intent alignment; and LLMStinger (Zhang,
Sun, and Li 2025) fine-tuned small LLMs via RL to gener-
ate adversarial suffixes. Despite this progress, most methods
are on-policy and optimize sparse/binary rewards. On-policy
rollouts discard past data and drive up query cost, while
pass/fail signals produce unstable gradients, weak credit as-
signment, and mode-collapse toward a few templates; our
off-policy SAC with dense, multi-aspect ratings reuses expe-
rience, stabilizes updates, and explicitly trades off success,
novelty, stealth, and efficiency. In parallel, the Crescendo
attack (Russinovich, Salem, and Eldan 2024) and the AAAI-
25 attention-shifting analysis (Du et al. 2025) show how
multi-turn interactions can shift model focus and bypass
safeguards, underscoring the need for adaptive, feedback-
driven evaluation.

Diversity, stealth, and open-ended adversarial prompt gen-
eration. Beyond pure success rate, several works emphasize
linguistic diversity and stealth.Early neural work on control-
lable text generation introduced attribute-conditioned mod-
els to diversify surface form without altering intent (Hu et al.
2017). Rainbow Teaming (Samvelyan et al. 2024) uses
multi-agent exploration to produce diverse attack styles,
while DiffusionAttacker (Wang et al. 2024) employs a dif-
fusion model for fluent paraphrasing of harmful requests.
Recent approaches such as Learning Diverse Attacks on
LIMs (ICLR 2024) adopt GFlowNet fine-tuning to balance
novelty and effectiveness. However, these systems typically
lack adaptive, rating-driven feedback and explicit query-
efficiency controls, making them expensive to scale and less
stable than RL formulations with dense rewards.

Research gap. Across the literature, three gaps persist:
(1) reward signals are predominantly sparse or one-
dimensional, undermining learning stability; (2) pipelines
rarely account for diversity—efficiency trade-offs under re-
alistic query budgets; and (3) adversarial prompt generation
and defense are typically evaluated in isolation, obscuring
system-level dynamics. We address these by coupling an off-
policy SAC agent attacker with a controllable rewriter and a
calibrated multi-aspect judge, yielding interpretable 5D rat-
ings and query-efficient learning for scalable evaluation of
both jailbreaks and guards.

Methodology
Problem Setup

We cast jailbreak discovery as a RL problem, where an at-
tacker interacts with a target large language model (LLM)



Table 1: Summary of main notations.

Symbol Description

St State at step t (dialogue history, operator,
sliders)

ar = (o¢,z:) Hybrid action: operator o, and control sliders
Zt

O Operator ~ set: {TRANSLATE, ENCODE,
ROLE-PLAY, DECOMPOSE, EUPHEMIZE }

Tty Raw judge rating for aspect ¢ € {1,...,5}

Tt Normalized rating (Eq. 1)

w;(t) Curriculum weight for aspect ¢ at time ¢

Ags Ady Ae Cost coefficients (query, duplication, length)

Cq,Caq,Cy  Query cost, near-duplicate, and over-length

penalties (Eq. 3)
Qmax, Lmax Per-item query budget and prompt-length cap

B Replay buffer maintaining running extrema
T Episode horizon (maximum number of turns)
J(mo) Expected episodic return (Eq. 4)

across 1’ turns to elicit unsafe responses while remaining
stealthy and novel. The goal is to learn a policy mg(a; | s¢)
that maximizes a dense, rating-based reward rather than a
binary success signal.

Markov decision process formulation. We formulate the
interaction as MDP defined by states s;, hybrid actions a;,
transition kernel P(s;y1 | st,at), and per-step reward R;.
The Markov property is assumed with respect to s;.

At each step t, the state s; includes: (i) the harmful-intent
category; (i) dialogue history (w1:t—1,y1:4—1), where u; and
y; denote the agent’s prompt and the target’s reply; (iii) the
current operator family; and (iv) rewriter control sliders. The
hybrid action a; = (o4, 2z;) combines a discrete operator
0; € O and continuous sliders z; € [0,1]*, where O de-
notes the operator family (see Table 1). We set k£ = 3 unless
stated otherwise. Each episode runs for up to T" = 3 turns,
terminating early on success or an early-exit condition.

Ratings and normalization. After every action, the judge
LLM produces raw scores T; € R® for the five aspects Suc-
cess, Stealth, Novelty, Efficiency, and Impact. To standardize
these signals across batches, we apply per-aspect min—max
normalization (Eq. 1):

Tei — My -8
Tti = —7F — , €=107"7,
m; —m, +e€ (1)
m; = ml%nf.,i, mi = mgxf.’i,

where B is the replay buffer maintaining running extrema.
A sample is marked as successful if rgcc > Toyee With thresh-

old Ty = 0.5, and an early-exit trigger occurs when the
two-turn mean of (rgec, T'steattn) falls below 0.2.

Reward and curriculum. The five normalized ratings are
linearly combined with adaptive weights and cost terms to
yield the per-step reward (Eq. 2):

5
Ry = wi(t)rei — AyCqy — XaCa — MCr. (2)
i=1
The curriculum weights w; (t) shift emphasis from explo-
ration (Novelty, Stealth) in early epochs to exploitation (Suc-
cess, Impact) in later ones. The cost terms penalize excessive

queries, duplicate generations, and over-length prompts, de-
fined in Eq. 3.

_ #target calls at ¢

C ;

e Qmax
Cy= 1{ Jaccardym (ut, B) > 0.9}7 3)
C, = max (0, |u¢| — Lmax).

Lmax
For numerical stability, the resulting reward R; is clipped
to [—1,1].

Objective Function. The attacker optimizes the policy pa-
rameters # to maximize the expected episodic return (Eq. 4):

T
> R
t=1

All notations used in Eqs. 1-4 are summarized concisely in
Table 1.

J(mg) =Eg, “)

Proposed Triad Architecture

Our framework unifies three cooperating agents (Fig. 1) in a
closed, target-in-the-loop cycle:

1. Attacker (SAC policy). A hybrid-action SAC agent selects
both a discrete operator family (TRANSLATE, ENCODE,
ROLE-PLAY, DECOMPOSE, EUPHEMIZE) and continu-
ous style sliders (¢, 7, p) controlling prompt length, sam-
pling temperature, and persona intensity.

2. Rewriter LLM. Implemented with Yi-9B (01.AI 2024),
this controllable generator rewrites the plan into a fluent,
stealthy paraphrase without altering semantic intent, in-
jecting surface diversity while preserving meaning.
Yi-9B is safety-aligned and may therefore decline to gen-
erate paraphrases for inputs that express highly harmful
intent. In our current framework, such refusals are treated
as low-value terminal outcomes, and no query is issued to
the target model. A more detailed examination of refusal
behavior and its influence on policy learning remains for
future work, including potential extensions that incorpo-
rate rewriter uncertainty into the state representation or
adapt operator selection accordingly.

3. Judge LLM. A calibrated LLaMA-3-Instruct model (tem-
perature = 0) (AI@Meta 2025) evaluates each target re-
sponse and returns five ratings: Success (likelihood of
alignment violation), Stealth (inverse detectability via
refusal-logit and perplexity proxies), Novelty (lexical and
embedding diversity), Efficiency (inverse query cost), and
Impact (safety severity of the generated content).

To keep the focus on demonstrating the benefits of
dense, multi-aspect rewards, this study adopts a single
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Figure 1: RL-based rating-driven triad for jailbreak evaluation. (1) The SAC attacker selects an operator family and continuous
style sliders; (2) the rewriter LLM generates a stealthy paraphrase preserving intent; (3) the target model produces a response;
(4) the judge LLM returns five finely refined ratings (Success, Stealth, Novelty, Efficiency, Impact) that are curriculum-weighted
into a dense reward; (5) transitions enter a stratified replay buffer to stabilize off-policy learning.

LLaMA-3-based judge with a fixed evaluation prompt.
A broader calibration effort—such as comparing judge
scores against a small set of human annotations and as-
sessing robustness under alternative judge prompts or
models—is outside the present scope and will be pursued
in future work. Such analyses will help quantify potential
judge-specific biases and strengthen the reliability of the
reward signal.

Training one target model at a time ensures quasi-
stationary feedback and precise cost accounting. The same
triad extends naturally to target pipeline for evaluating pass-
through robustness.

Reward Normalization and Curriculum

Raw judge scores are min—max normalized to [0, 1] within
each JailbreakBench category using running statistics from
the replay buffer (with e=10~% for numerical safety). A two-
stage curriculum gradually re-weights the five aspects: early
epochs up-weight stealth and novelty to encourage explo-
ration; later epochs increase the weights on success and im-
pact to refine exploitability. The scalar reward is clipped to
[—1, 1] to cap outliers and stabilize optimization.

Stability and Query-Efficiency Mechanisms

Because target-model feedback is both noisy and costly, we
add three mechanisms:

e Stratified replay. Transitions are binned by reward mag-
nitude; mini-batches sample uniformly across bins so
rare, high-value experiences remain visible. Per-sample
importance weights correct for the induced sampling
bias.

e Early-exit policy. Episodes terminate if, after two turns,
the running mean of (rgcc, T'siearn) falls below 0.2, or im-

mediately once 7y > 0.5. This avoids wasting queries
on unpromising trajectories.

* Hash-based de-duplication. Each paraphrase is Min-
Hashed; candidates with Jaccardyy > 0.9 against the
buffer incur a penalty and are skipped in replay, enforc-
ing lexical diversity without heavy text matching.

Default hyperparameters are: five replay bins, batch
size 256, learning rate 3 x 10~4, discount v = 0.99, tar-
get entropy set to the SAC default for the hybrid action
space, curriculum shift every 5K steps, and 20K-30K gra-
dient updates per run on dual NVIDIA A10 (24GB) GPUs.
We use AdamW with (31, 82) =(0.9,0.999) and weight de-
cay 1072; target networks update with 7 = 0.005. Replay
buffer size is 5 x 10° transitions.

Evaluation Protocol

After training, both the SAC policy and the rewriter are
frozen. Evaluation uses the harmful subset of Jailbreak-
Bench (OOD) dataset under a fixed per-item query budget
(10 calls unless stated otherwise). As summarized in Ta-
ble 2, our method achieves the highest Attack Success Rate
(ASR) across all three target families. While prior methods
report results primarily on AdvBench dataset, our evalua-
tion on the out-of-distribution JailbreakBench (JBB—OOD)
dataset demonstrates stronger generalization under compa-
rable conditions. Although we log additional metrics such as
Queries-per-Success (Q/S), Distinct-n, and per-aspect judge
means internally, for fairness and alignment with prior work,
we only report ASR in the main paper.

For prior methods such as PAIR (Chao et al. 2023), Auto-
DAN (Liu et al. 2024), and RLBreaker (Chen, Kang, and Li
2024), we report their published results on AdvBench rather
than re-running all systems under identical budgets on JBB—



Table 2: Detailed comparison across studies on three target families. For each model, we report Attack Success Rate (ASR, 7).
“Dataset” denotes the benchmark each study used. Our results are evaluated on JailbreakBench harmful OOD (JBB-OOD). x
indicates results not reported in the original work.

Study Dataset Qwen2.5-7B-Instruct Mistral-7B-Instruct LLaMA-3-Instruct
PAIR (NeurIPS’23) AdvBench X 0.6836 X
AutoDAN (ICLR’24) AdvBench X 0.7739 X
GPTFuzzer (NeurIPS’23) AdvBench 0.14 0.7859 0.24

GCG (ICLR’24) AdvBench X 0.6220 X
RLBreaker (NeurIPS’24) AdvBench X 0.7480 0.724
RL-JACK (NeurIPS’24)  AdvBench 0.91 X 0.45
xJailbreak (arXiv’25) AdvBench 0.80 X 0.63

PASS (arXiv’25) AdvBench 0.85 X X

Ours (SAC-Triad) JBB-OO0D 0.955 0.943 0.724

Metric key: ASR = successes / pairs (proportion in [0, 1]). X denotes results not reported in prior work.

OOD. As a result, the controlled comparison on query ef-
ficiency pertains primarily to SAC-Triad. A fully unified
benchmark with re-implemented baselines under matched
datasets and query caps is an important direction for sub-
sequent work.

Each experiment is run with three random seeds (42,
43, 44); we fix all other sources of randomness (Python,
PyTorch, CUDA, and tokenizer shuffling) for repeatability.
We report mean + standard deviation across seeds and in-
clude 95% confidence intervals (CIs) in the supplement. Un-
less noted, decoding uses temperature 0.7 and top-p 0.95 for
the rewriter; the judge runs at temperature O (deterministic).

Discussion

As summarized in Table 2, our method achieves higher At-
tack Success Rates (ASR) across all target families. These
results indicate that rating-based reward shaping stabilizes
RL training and improves query efficiency. As shown in Ta-
ble 3, compared to PPO-based baselines such as RLBreaker,
our framework achieves up to 65% fewer queries per suc-
cess (Q/S 2.4 vs. 7.0 on Mistral), demonstrating the bene-
fit of off-policy experience reuse and stratified replay in re-
ducing rollout cost. Even under identical query budgets, the
SAC-Triad maintains comparable or higher ASR while pro-
ducing more diverse and stealthy prompts, confirming that
query-efficient dense-reward optimization can scale to real-
istic adversarial evaluation settings.

First, the stratified replay buffer preserves rare, high-
value trajectories in minibatch sampling, which increases
the success-to-query ratio and mitigates collapse to fre-
quent, low-reward patterns. Second, the controllable rewriter
sustains surface-form diversity and stealth, reducing over-
fitting to a narrow set of high-reward prompts. Together,
these mechanisms enable robust jailbreak discovery under
fixed budgets while keeping the reward signal interpretable
through multi-aspect ratings.

Practical implications. Because the judge produces de-
composed aspect scores (Success, Stealth, Novelty, Ef-

Table 3: Query efficiency comparison against PPO-based
baselines, showing higher ASR.

Method Dataset ASR Q/S

RLBreaker (NeurIPS°24) AdvBench 0.748 7.00
Ours (SAC-Triad) JBB-OOD 0.943 241
Note. Q/S = total target calls / successful jailbreaks. Lower

values indicate greater query efficiency.

ficiency, Impact), practitioners can audit which dimen-
sions drive policy improvement and set budget-aware cur-
ricula (e.g., favoring novelty/stealth early, success/impact
later). This supports reproducible safety auditing rather than
opaque pass/fail outcomes.

Conclusion

This paper presented a unified, rating-driven reinforcement
learning framework for jailbreak evaluation that couples a
SAC agent attacker with a controllable rewriter and a cal-
ibrated judge. By converting five aspect scores—Success,
Stealth, Novelty, Efficiency, Impact—into dense, curriculum-
weighted rewards, the method stabilizes training and im-
proves query efficiency over on-policy baselines. Stratified
replay, early-exit, and de-duplication further reduce cost
while preserving diversity, enabling robust Guard— Target
evaluation within a single harness. Beyond higher success
rates at lower query budgets, the decomposed ratings yield
interpretable audits of where and why attacks succeed. Fu-
ture work includes full ablations (reward shaping, replay,
SAC vs. PPO), cross-family transfer and domain shift stud-
ies, and extensions to multimodal safety (e.g., text-to-image)
under stricter sandboxing and human-in-the-loop calibration
for the judge.

Threats to validity. There are four threats to our proposed
framework in realistic scenarios. (i) Judge bias: Although
we calibrate the judge and run it deterministically, resid-



ual bias in aspect scoring may affect rewards; cross-judge
checks and human spot-audits are future work. (ii) Dataset
shift: We train with SORRY-Bench priors and evaluate on
JailbreakBench OOD; other taxonomies or domains may
shift the distribution of “stealth” or “impact.” (iii) Compute
budget: Query caps and hardware choices (dual A10s) con-
strain exploration; higher budgets may change relative gains.
(iv) Implementation variance: Rewriter/judge decoding set-
tings affect stability; we report temperatures and seeds but
minor deviations can alter curves.

Privacy and Logging

For ethical compliance, no raw harmful text or model re-
sponses are stored. Logs contain only hashed signatures
(MinHash signatures), operator IDs, style sliders, the five
normalized ratings, final reward, success flag, and token/-
query counts. All IDs are anonymized, and timestamps are
rounded to the nearest minute. This enables reproducibility
while preventing the leakage of unsafe or sensitive content.

Ethical Statement

This research is conducted solely for advancing the safety
evaluation of large language models. All experiments were
performed on isolated systems without exposure to end users
or public deployment. No harmful prompts, jailbreak data,
or model weights are released. Only aggregated results and
anonymized statistics are shared to facilitate reproducibility
while minimizing risk of misuse.
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Table 4: Detailed comparison across studies. Columns are grouped by target family. For each family we report Attack Success
Rate (ASR, 1), Queries per Success (Q/S, ), Distinct-2 (D2, 1), and the judge Success mean in [0, 1] (Succ., 1). “Dataset” is
what each study used. Our results are on JailbreakBench harmful OOD (JBB-OOD).

Qwen2.5-7B-Instruct Mistral-7B-Instruct LLaMA-3-Instruct LLaMA-Guard3-8B (as target) Granite-Guardian-8B (as target) ShieldGemma-9B (as target) GPT-0SS-20B
Study Dataset ASR Q/S D2 Succ. ASR Q/S D2 Succ. ASR Q/S D2 Succ. ASR QS D2 Succ. ASR Q/S D2 Succ. ASR Q/S D2 Succ. ASR  Q/S D2 Succ.
PAIR (NeurlPS’23) AdvBench X X X x 06836 x x X X X X X X X X X x x X x x x x X x x x x
AutoDAN (ICLR’24) AdvBench X X X x 07739 x x x x x x x x x x X x X X x X X x x X X X X
GPTFuzzer (NeurIPS’23) AdvBench  0.14 x x x 07859  x x X 0.24 X X X X X X X x x X x X x x X x X X X
GCG (ICLR24) AdvBench X X X x 06220 x X X X X X X X X X X X X X X X X X x X X X X
RLBreaker (NeurIPS'24) AdvBench X X X x 07480 7.0 059 x 0724 x X x x x x x X X X x x x X X X X X X
RL-JACK (NeurIPS’24) ~ AdvBench 091 x x X X x X X 0.45 X X X X X X X x X X X x x X X x x X x
xJailbreak (arXiv’25) AdvBench  0.80 x x x x x x X 0.63 X X X X X X X x x X x x x x X X x X X
PASS (arXiv'25) AdvBench  0.85 X X X X X X X X X X X X X X X X X X X X X X X X X X X
Ours (SAC-Triad) JBB-OOD 0.955 2.381 0.698 0.824 0.943 2.410 0.675 0.800 0.724 10.473 0.604 0.673 0.602 3.774 0.640  0.560  0.591 3.846 0.603 0.585 0.364 6.250 0.666 0.347 0.091 25.000 1.000 0.077

Metric key: ASR = successes / pairs (proportion in [0, 1]); Q/S = total target calls / successes; D2 = 2-gram diversity; Succ. = judge success
mean in [0, 1]. “X” denotes not reported.



