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Abstract

Large Language Models demonstrate strong reasoning and
generation abilities, yet their behavior in multi-turn tasks of-
ten lacks reliability and verifiability. We present a task com-
pletion framework that enables LLM-based agents to act un-
der explicit behavioral guidance in environments described
by reinforcement learning formalisms with defined observa-
tion, action, and reward signals.

The framework integrates three components: a lightweight
task profiler that selects reasoning and generation strategies,
a reasoning module that learns verifiable observation—action
mappings, and a generation module that enforces constraint-
compliant outputs through validation or deterministic synthe-
sis. We show that as the agent interacts with the environment,
these components co-evolve, yielding trustworthy behavior.

Introduction

Most real-world tasks from troubleshooting software to
planning multi-step operations or interacting with users re-
quire agents to perform consistent action selection across
turns and maintain constraint-compliant behavior generation
throughout execution. Although recent advances (Yao et al.
2023; Shinn et al. 2023; Schick et al. 2023; Richards 2023;
Packer et al. 2024; Wang et al. 2023; Nakajima 2023) in
agentic LLMs have improved their task completion abilities
through mechanisms such as memory, tool use, and reflec-
tion, these mechanisms remain largely implicit and difficult
to guide or steer, making it challenging for those building
agentic systems on top of these models to maintain verifiable
and reliable task completion (Ganguly et al. 2025; Matton,
Chen, and Grosse 2025).

Our goal is to provide LLM-based agents with a task com-
pletion framework that allows them to operate under explicit
behavioral guidance. In this framework, trust denotes the
agent’s capacity to act in ways that are both verifiable (its
reasoning of action selection can be inspected and validated)
and reliable (its generated behaviors consistently comply
with task constraints and environment feedback) (Li 2025;
de Cerqueira, Oliveira, and Rodrigues 2025).

We target tasks described in reinforcement learning (RL)
formalisms, where environments define actions, observa-
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tions, rewards. Within this setting, we develop a fask com-
pletion framework that enables LLM agents to learn to act
in a verifiable and reliable manner. Our framework has three
main components as shown in Figure 1 and described below.

The first component is a lightweight rask profiler that ana-
lyzes the given task environment variables. The profiler acts
as a meta-learner, determines the task’s structural proper-
ties (e.g., temporal dependencies or constraint intensity), and
guides the LLM agent toward the most suitable strategies for
action selection and behavior generation.

Building on this guidance, the second component, the rea-
soning module, governs the selection of structured actions
across temporal windows. It analyzes past trajectories from
the agent’s task executions and extracts observation—action
mappings that consistently yield high rewards. Guided by
the task profiler, the reasoning module can adapt its tem-
poral scope: in tasks where success depends on short-term
decisions, it focuses on single-turn mappings, whereas in
temporally dependent tasks, it aggregates information over
longer horizons. The extracted mappings are stored as a per-
sistent procedural memory and integrated with the underly-
ing LLM’s native reasoning during subsequent task execu-
tions. Throughout the paper, we refer to these mappings as
rules and use two terms interchangeably'.

Finally, the third component, the generation module, en-
sures constraint-compliant behavior generation by validat-
ing or revising the agent’s outputs so that they satisfy all
task constraints and reasoning-derived mappings. Its com-
pliance strategy is determined by the task profiler: for lightly
constrained tasks, the module may simply verify the validity
of the model’s native output, whereas for constraint-heavy
tasks, it employs structured procedures such as determinis-
tic enumeration or online code generation. In these cases, the
module uses environment variables and reasoning mappings
as input specifications to generate valid, verifiable outputs
that align with task feedback.

As the agent executes a given task, these components
interact continuously: the task profiler refines its under-
standing of the environment over epochs?. , the reasoning
module progressively learns better observation—action map-

"Note that we use the term rules broadly to include both explicit
conditional patterns and higher-level strategies.

2An epoch denotes a complete cycle of multiple trajectories,
each trajectory being a full sequence of observation—action—-reward
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Figure 1: The Proposed Framework

pings from collected trajectories. , and the generation mod-
ule evolves along it, adapting its output strategies to the
updated reasoning state. Together, they steer the native be-
havior of the underlying LLM into a transparent, feedback-
guided process where every action is both verifiable and re-
liable.

In this paper, we present the first evaluation results of the
proposed framework on two representative multi-turn envi-
ronments: Guess My Number and Wordle. The evaluation
focuses on three complementary metrics: a) average task
completion reward, b) consistency of action selection,
and ¢) compliance with constraints, which together capture
agent verifiability and reliability. Across both environments,
agents guided in our framework consistently outperform na-
tive baselines with and without in-context learning.

Figure 1 shows the high-level interaction of our frame-
work with a given task’s environment interface and the
LLM agent assigned for the task. Our framework provides
a generic task environment interface to describe the execu-
tion environment (i.e. observation and action state variables,
reward mechanism, and goal description) of a given task.
Once the environment is described, all components of the
framework and the LLM agent conform to this interface.

In the following, we first describe the rest of the compo-
nents in Figure 1 in detail. Then we present how they work
together in Algorithm 1. Finally, in the experiments section,
we exemplify their functions through two sample tasks.

The Agent with RL Prompting Framework

At the foundation of our framework lies an action—
observation-reward interaction loop grounded in rein-
forcement learning. This prompting backbone (see Figure 2)
supplies a structure for the LLM’s native generation and se-
quential task execution. By embedding the model in an ex-
plicit loop of actions, observations, and rewards, the back-
bone enforces temporal coherence and prevents the agent
from treating each turn as an isolated completion.
Concretely, the prompting backbone interfaces with a task
environment through a standardized schema exposing three
fields: observations, actions, and rewards. In addition, at
each turn, the LLM agent receives two kinds of structured
context: (1) an explicit record of the current trajectory
history (all past observations and actions in the ongoing

steps.

You are an agent that interacts with an environment.
Your objective is to imize the ive reward on the current trajectory.

## Environment Description
Environment Goal: {{@SKIGESCHPHOR)
Action space: [ACHONSPACE)
Observation space: [OBSENGHONSPACE]

History of the current trajectory: [CUIfSREEGICCION]
Past sample trajectories and final rewards : {{{GJSCIONES)

Think step by step before choosing an action.
Ground your next action in the current observations and what has previously worked.

Figure 2: The main execution prompt of the LLM agent.
Placeholders in {} are populated during execution.

run), anchoring subsequent action selection in accumulated
progress; and (2) optionally, a set of past trajectories with
final rewards to simulate in-context learning (ICL) from
prior experience. While the ICL field is not required for the
loop itself, it allows us to assess whether contextual expo-
sure to past successes improves the task completion or not.

When used on its own, i.e. without our proposed frame-
work this backbone yields a prompting-only baseline
agent. It provides the minimal structure for sequential ac-
tion selection and produces an auditable interaction trace, al-
lowing us to evaluate the intrinsic behavior of LLMs under
feedback-guided prompting. In the next sections, we aug-
ment this backbone with a task profiler that supplies behav-
ioral guidance, reasoning, and generation modules.

Task Profiler

One of the main challenges in multi-turn environments is
that different tasks demand different styles of behavioral
guidance at different temporal stages of the task execu-
tion. Some tasks require rapid, turn-local responses to new
feedback, while others rely on long-horizon bookkeeping
or strict enforcement of cumulative constraints. Without
a mechanism to detect these structural differences, LLM
agents tend to drift between inconsistent reasoning modes,
reducing reliability over extended interactions (Guerdan
et al. 2025).

The task profiler provides this adaptive guidance layer. It
analyzes the task environment and identify key features of
the task and informs how the agent should adjust its reason-
ing and generation strategy to increase its task completion
success. Recent brain-inspired modular architectures simi-
larly highlight the value of separating task analysis, plan-
ning, and constraint monitoring as coordinated processes to
improve multi-step reliability (Webb, Mondal, and Momen-
nejad 2025).

The profiler does not solve the task directly; instead, it
determines how the desired behavior should be generated
for successful task completion. In that regard, the task pro-
filer acts similar to a meta-level learner.

In this paper, we make our first attempt to design a
task profiler grounded on principles from cognitive sci-
ence (Newell 1990), symbolic Al (Fikes and Nilsson 1971;
Solar-Lezama 2008), and reinforcement learning (Sutton,
Precup, and Singh 1999; Garcia and Fernindez 2015)
that emphasize adaptive, interpretable behavior. Following



Newell’s concept of flexible human learning (Newell 1990),
it is designed to identify the structural demands of a task
and select reasoning and generation strategies suited to its
temporal and constraint patterns.

Our current implementation represents a minimal instan-
tiation of such a profiler. We implement the profiler as a
lightweight, LLM-based function prompted to act as a cog-
nitive strategy engine (see Figure 3). The task of this engine
is to map a given environment to a compact set of task fea-
tures such as temporal structure, suitable generation strategy
etc. as defined in the prompt to capture the essential behav-
ioral dimensions of a task. Later, it can be extended toward
more nuanced or data-driven profiling strategies that incor-
porate richer environment cues.

By adaptively identifying the appropriate behavioral
regime for each task, the profiler allows guided agents to sus-
tain verifiable reasoning and reliable task execution across
structurally diverse environments.

Reasoning Layer

The reasoning layer gives the agent a persistent, inter-
pretable memory of what has led to successful task com-
pletion in the past. Instead of treating every step as a new
generation, it analyzes past trajectories and learns reusable
action rules that connect what the agent observes with what
it should do next to achieve reward. These rules accumu-
late over time, forming a growing library of “if condition —
action” mappings that guide behavior across multiple turns.
This builds an additional layer of reasoning on top of the
underlying LLM’s native capabilities, allowing the agent to
maintain interpretable logic that persists beyond the model’s
immediate token-by-token reasoning.

The reasoning layer adapts its operation based on the task
profile provided by the profiler. If the profiler classifies a
task as sequential, the layer focuses on analyzing how the
environment evolves with each subsequent turn and iden-
tifying which actions consistently lead to successful task
completion. If the task is cumulative, it integrates informa-
tion across turns, maintaining long-horizon eliminations and
constraints that shape later choices. This adaptivity ensures
verifiable and consistent behavior aligned with the structural
demands of each task.

Operationally, the reasoning layer is implemented as a
collection of LLM-based functions, each aligned with a spe-
cific reasoning strategy prescribed by the task profile. These
functions consume task environment variables and past tra-
jectories.

The reasoning layer examines past trajectories at a tempo-
ral granularity suggested by the profiler and then identifies
regularities that consistently led to reward. For example, in
a task where the profiler suggests a one-step temporal struc-
ture, when a non-zero reward is observed at turn ¢+ 1, the
module inspects the previous turn ¢: the observation at ¢,
the action taken, and the resulting outcome. It then asks the
LLM to express this relationship as a rule of the form:

if [observation condition at turn t],
then the best action is [action at t+1].

Each discovered rule is stored in a structured format in-
side a central Rule Bank, along with its success rate and
usage history . Over time, this collection becomes an ex-
plicit, auditable representation of the agent’s learned behav-
ioral logic, tested across many runs of the same task. When
a familiar condition reappears, the corresponding rule can
be applied immediately, providing a verifiable and efficient
way to select actions. Importantly, the reasoning layer does
not execute actions directly. It serves as a stable substrate of
verified logic that constrains the generation layer.

Generation Layer

We separate reasoning and generation in our framework be-
cause they are conceptually and functionally distinct cog-
nitive processes. Splitting them allows for greater inter-
pretability and reliability. In our framework, the reason-
ing layer focuses on understanding and structuring the task
logic, while the generation layer is responsible for executing
that logic as valid, reliable actions.

While reasoning keeps track of how observations relate to
valid actions, generation executes this knowledge, i.e. it en-
sures that outputs remain valid under all environment con-
straints and consistent with verified reasoning. This is where
the agent’s planned behavior becomes visible: every gener-
ated action must pass through a validation step before being
accepted.

The generation layer is implemented as a class of tools.
The task profiler prescribes the most suitable one among
them depending on the task’s structural complexity. For
lightly constrained tasks, the profiler may recommend a di-
rect generation mode, where the model’s native output is
simply checked for validity against the reasoning state. For
tasks that are cumulative or constraint-heavy, the profiler
prescribes structured generation procedure (e.g. determinis-
tic enumeration or guided sampling) to ensure that all gen-
erated actions satisfy accumulated task rules. Typical exam-
ples include structured games such as Sudoku or Wordle,
where output validity is tightly constrained by the evolv-
ing game state. In these environments, the profiler classifies
the problem as cumulative and constraint-heavy and recom-
mends deterministic enumeration implemented as code over
the candidate set.

At each turn, the reasoning layer proposes a structured
action containing both the intended output and its associ-
ated set of constraints. Before committing this output, the
generation layer validates it using the environment’s built-
in validity check. If the proposed action violates any active
constraint, e.g. repeating an invalid candidate or breaking
positional rules) the system automatically falls back to de-
terministically enumerating all valid candidates. This fall-
back filters the candidate set for constraint compliance and
selects the first valid option (or a random one, if permitted).
Through this mechanism, every output remains verifiably

*Due to lack of space, we omit the details of the Rule Bank and
how we manage (register, test, filter) rules over subsequent runs
(trajectories) of the same task. The further details can be found in
the code base.



You are a cognitive strategy engine. Your job is to analyze a task environment and produce a structured
task profile that will help a symbolic agent decide how to learn and act from experience in this multi-turn RL environment.

## Environment Description
Environment Goal: [{SSKIGESEHBHOH]
Action space: [@CHORNSPACE)}
Observation space: (GBSSNEHONSPACS]
Sample trajectory: [(iGIECIONS

Carefully analyze the environment and its goal. Base your classification on the kind of symbolic rules that can be learned from what the agent
actually observes at each turn, not on an ideal strategy that relies on hidden memory or unobserved beliefs.

## Definitions of the task profile features :

temporalStructure: Reflects how much past context must be integrated to extract meaningful rules from agent behavior.
- Sliggested rule extractioNIMEtnBd: Recommendation on how to extract symbolic rules given the task structure.

- lBNBEAlitY: Describes the typical scope of rules that govern agent behavior.

- InformativeBXamPIBIYBES: Indicates which types of trajectories provide useful information for symbolic rule extraction
Suggestedigeneration strateay: Indicates the recommended symbolic generation approach for this task.

Return a JSON object of the features as below.

“json{{

"rule,locaﬁty”: "turn-specific" | "trajectory-wide",

"suggested_rule_extraction_method": "single-step" | "multi-step" | "trajectory-level",

"informative_example_types': "success" | "failure" | "both",
"suggested_generation_strategy": "deterministic_ i

uE Pl
“thought": "A natural language explanation of why these specific profiling is chosen.”

| "free_ ion_with_post_filter" | "hybrid_guided",

Figure 3: Prompt design for the LLM-based task profiler.

valid with respect to both environment feedback and rea-
soning guidance.

Having introduced each module independently, we now
describe how they operate together in Algorithm 1.

Experiments
Tasks
For evaluation, we select two intuitive yet structurally dis-
tinct multi-turn game tasks: Guess My Number (GmN) and

Wordle. For each game, we implement their task environ-
ments as shown in Figure 4 and Figure 5, respectively.

Task Description Observation Space Action Space
Your goalis to guess the secret number | - turn_index: int = count of completed - thought: str = careful reasoning that
have chosen. Each turn, | will give you a conversation turns, beginning with 0. leads to your guessed number.
noisy hint about how far you are from the - distance_hint: int = noisy, non-negative | - guessed_number: int= the guessed
right answer. The noisy distance hint you integer representing the estimated number. never return an arithmetic
hear at each turn is independent of the absolute distance between the agent's | ~expression. must be between 0 and
previous hints. The distance hints get guess and the hidden target number. 10000

less noisy as the game goes on. Try to
find the number in as few turns as
possible to maximize your reward.

-guessed_number: int = the number
guessed by the agent in the current turn.
must be between 0 and 10000.

- number_correct: bool = flagif the
number was found.

Guess my Number
Task Environment Interface

Figure 4: Guess My Number (GmN) environment interface.

Guess My Number (GmN). At the start of each trajec-
tory (one complete run of the game), a secret target number
is sampled within the range [0, 10000]. The task of the LLM
agent is to correctly guess this number. At each turn, the
agent proposes a guess and receives a noisy distance hint in-
dicating how far the guess is from the target. Each trajectory
lasts for at most 15 turns. If the agent identifies the correct
number on turn ¢, it receives a reward of 100/¢; otherwise,
the reward is O.

The distance hint noise is generated by noise = 1000 -
0.2!, where  is the current turn index. This generating func-
tion is hidden from the agent, but the task description spec-
ifies that (i) the noise decreases as ¢ increases, and (ii) the
noise at each turn is independent of past turns. After ¢ > 5,

the noise becomes negligible, meaning the hint provides the
exact distance to the secret number. These temporal regu-
larities are the key to successful action selection and higher
overall reward. We evaluate whether the agent learns to rec-
ognize and exploit these patterns, verifying them through
reasoning and reusing them across epochs to guide future
guesses.

Task Description Observation Space Action Space
Your objective is to correctly guess the hidden
5-latter English word | have selected. After
‘each guess, you will receive feedback using

- thought: str = careful reasoning that

- turn_index: int = count of completed
leads to your guessed number.

conversation turns, beginning with 0.

color-coded signals: - d_word: str = th hat
o . - previous guess: str = the word guessed CACICCELGE ey A

;s‘v;‘.:’;ma letter s correct and in the correct e e e the word is. It is a 5-letter word that is

~Yellow: The letter s in the word but in the. BT

wrong position. - feedback: list = feedback for the most

- Gray: The letter is not in the word at al. recent previous guess.
You have up to 6 guesses to find the correct

- history: list=full history of (guess,
8 irs ob

wort
within these 6 turns.
- word_correct: bool = true if the

false

eliminate impossible loters and rfine your Ctherwiee,
strategy step by step. ‘ Wordle

The task s considered successful if you Task Environment
correctly guess the word within 6 attempts. ey

Figure 5: Wordle environment interface.

Wordle. At the start of each trajectory (one complete run
of the game), a secret five-letter English word is sampled.
The task of the agent is to correctly guess this word. At each
turn, the agent proposes a candidate and receives letter-level
feedback: a letter is marked as correct if it is in the right
position, misplaced if it appears elsewhere, and absent if it
does not occur in the target. Each trajectory lasts for at most
6 turns. If the agent guesses the correct word at any turn ¢, it
receives a reward of 100; otherwise, the reward is 0.
Wordle requires the agent to manage a set of cumula-
tive hard constraints that evolve across turns. Each feed-
back update specifies which letters and positions are fixed,
which letters are excluded, and which must appear else-
where. To succeed, unlike in GmN, the agent must maintain
a trajectory-wide record of these constraints and ensure that
every new guess complies with all accumulated information.



Algorithm 1: Task Execution Loop for the Guided Agent

Definitions: A: action space — set of valid actions.
a; € O: action taken by the agent at turn ¢.
O: observation space — set of observations.
ot € O: observed state at turn ¢.
r¢ € R: reward value received after executing a:—1.
frewara @ (0¢, at, 0t41, ht) — R — scalar reward function.
Suatigiy : (a¢,0¢, he,E) +— {True,False} — constraint/format
check.
fsep © (@) (0¢41, 7441, de41) — environment transition.
freset : () > 00 — resets environment.
gdone : (0t4+1,7t4+1,hey1) — {True, False} — task completion
predicate.
&= {A7 O, freward, fvalidilyy fstepy freset, gdnne} - task environment in-
terface.
Require: Task environment £
1: Initialize empty RuleBank R < ()
2: Initialize task profile P <— None
3: for epoche = 1to £ do
4: if e == k then

> after initial warm-up

S: P <TaskProfiler(£)
6: Select reasoning function freason, generation operator
feen from P
7 end if
8 for trajectory 7 = 1to T do
9: 00 fresel(), h 0
10 while not ggone do
11: Compose LLM prompt using £, h, and applicable
rules R
12: at < LLM.generate( freason, i)
13: Valid«ValidityCheck(a:, h, &)
14: if not Valid then
15: a¢ <FallbackGenerate( feen, &)
16: end if
17: (0141, Te41,de+1) < fuep(ar)
18: Append (o¢, at, r++1) to trajectory history h
19: t—t+1
20: end while
21: Store trajectory (h,741) in epoch log
22: end for

23: ReasoningUpdate(R, epoch log)
24: (Optional) P < TaskProfiler if task dynamics shift
25: end for

We evaluate whether the agent learns to track these evolving
constraints and generate reliable outputs that remain valid
and consistent across turns.

Setup

Agent Variants. We evaluate two categories of agents: a
baseline agent that operates without our framework, and a
guided agent that uses the same prompting backbone, but
runs within our task completion framework.

The baseline agent relies only on the RL prompting back-
bone, interacts with the environment through the standard
observation—action—-reward interface. At each turn, the LLM
generates an action directly from the prompt context, with-
out any persistent reasoning state or additional constraint
check. The baseline agent is tested in two variants: with and
without in-context learning. In the in-context variant, a small
set of randomly sampled successful trajectories is included

in the prompt (see Figure 2) at the start of each epoch. The
guided agent augments the same backbone with our pro-
posed framework.

The Runs & Model All agents are evaluated for 30
epochs, with 20 trajectories each in both tasks. Performance
metrics are reported with 95% confidence intervals. In all
experiments, we use GPT-4.1-mini, a non-reasoning model,
as the underlying LLM. This choice is intentional: it allows
us to isolate the architectural contributions of our proposed
framework from factors related to model scale or intrin-
sic reasoning ability. Nonetheless, the framework itself is
model-agnostic, and future work will evaluate its effective-
ness with larger, reasoning-capable agentic LLMs.

Results

Features temporal rule rule informative past generation
structure locality extraction samples strategy
Guess my Number sequential turn specific single step success hybrid guided

deterministic

Wordle cumulative 5
enumeration

trajectory wide trajectory level  success & failure
Figure 6: Task profiler generated outputs.

To start with, Figure 6 presents the output of the task pro-
filer for GmN and Wordle for the existing task structure cate-
gories. Throughout the experiments below, the guided agent
behaves according to these strategies. The task profiler is run
at the end of each epoch and each time consistently outputs
the strategies as presented.
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Figure 7: GmN: Average reward per epoch, each epoch is
averaged over 20 trajectories, and presented with a 95% Cls.

GmN Evaluation

Task Success and Reasoning Consistency. Figure 7
shows the average cumulative reward per epoch. The base-
line agents, with or without in-context learning, show no
consistent improvement over time. This indicates that simple
exposure to past trajectories is insufficient to achieve reliable
behavior in a temporally structured task.

In contrast, the guided agent achieves steady improve-
ment and stabilizes at a higher average reward. At the end of



each epoch, our framework’s reasoning module, guided by
the profiler, analyzes the successful trajectories focusing on
what actions over the observed state yielded a correct guess.

At first, the mappings (aka. rules) derived from these
past trajectories tend to overfit to the actual values of the
observed variables and do not generalize well, but as the
epochs proceed the reasoning module learns to generalize
them by verifying their validity in the new trajectories. In
fact, the practice of discovering new rules and testing them
shows itself in the performance decline in epochs 8, 11, 13.
This behavior corresponds to exploration vs. exploitation in
reasoning until it converges to a high reward state.

After epoch 15, the rules stabilize, marking the transi-
tion from ad-hoc reasoning to generalized, consistent rea-
soning. We quantify this progression in the next section us-
ing the reasoning consistency ratio (Figure 9), which mea-
sures how reliably the agent applies these learned mappings
across turns. Overall, these rules serve as repeatable patterns
and show that the agent transitions from ad-hoc reasoning to
generalized, consistent reasoning over time.

Figure 8: GmN: Verified rules after epoch 15
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Figure 9: GmN: Proportion of turns extracted rules are cor-
rectly applied by the guided agent.

Verifiability and Reliability. We assess verifiability of
reasoning using the reasoning consistency ratio: the frac-
tion of turns in which an applicable rule from the learned
mapping set is correctly invoked for the current observation.
Here, an applicable rule refers to a mapping whose precon-
ditions match the features of the current observation state.
As shown in Figure 9, this ratio increases steadily across
epochs, indicating that the agent’s reasoning becomes pro-
gressively more stable and rule-consistent over time. Occa-
sional dips correspond to exploratory epochs in which newly
discovered rules are tested or refined as explained above.
We assess reliability of behavior via outcome variance:
the guided agent exhibits narrower confidence intervals in
average reward (Figure 7), signaling lower across-trajectory
variability and more predictable performance. Together,
these results show that our framework improves both verifi-
ability (reasoning that can be checked against explicit map-

pings) and reliability(behavior that remains stable and con-
sistent across runs.).

Baseline Agent with:
Baseline Agent with

Average Reward
AN
¥
~

a0

Epoch

Figure 10: Wordle: Average reward per epoch, each epoch is
averaged over 20 trajectories, and presented with a 95% Cls.

Wordle Evaluation

Task Success and Constraint Compliance. Most of the
performance gains in the Wordle task stem from the gener-
ation module. Therefore, to isolate the contribution of the
generation module, we activate it only after epoch 10; dur-
ing the first ten epochs, the guided agent operates without
code-based output generation, relying solely on the reason-
ing module. This allows us to directly observe the effect of
introducing programmatic constraint enforcement on behav-
ioral stability.

Figure 10 shows the average cumulative reward across
epochs. Baseline agents show no consistent improvement:
although they often restate constraints correctly in natural
language, their generated outputs frequently violate them.
Providing in-context demonstrations of successful trajecto-
ries yields no measurable benefit, confirming that contex-
tual exposure alone does not enable consistent constraint en-
forcement.

The guided agent eliminates constraint violations because
the task profiler correctly classifies the environment as cu-
mulative and constraint-heavy. Based on this classification,
the profiler guides the agent to use code-based generation,
where outputs are programmatically generated to satisfy all
accumulated constraints.

Verifiability and Reliability. We define verifiability of
generation as the agent’s ability to produce outputs whose
correctness can be objectively checked against known
task constraints. We quantify this using the constraint-
compliance ratio, i.e. the proportion of turns in which gen-
erated outputs satisfy all active constraints defined by feed-
back so far.

Figure 11 shows that the guided agent maintains a con-
sistently high compliance rate, recovering from most ini-
tial violations within the same turn via deterministic fall-
back generation. On average, over 60% of invalid outputs
are corrected immediately, showing that verifiable constraint
checks stabilize multi-turn behavior.

We interpret reliability as the consistency of constraint
compliance across trajectories. The narrow variance in com-
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Figure 11: Wordle: Constraint-compliance and recovery rate
of the guided agent. Each box represents the distribution of
constraint recoveries per epoch.

pliance ratios and task rewards indicates that the guided
agent performs predictably and stably across runs, even
as constraint complexity increases. Together, these results
demonstrate that integrating explicit, feedback-guided con-
straint handling into generation leads to both verifiable and
reliable multi-turn behavior.

Finally, Figure 12 shows that the guided agent not only
achieves higher success rates but also completes tasks in
fewer turns, reflecting greater efficiency and behavioral sta-
bility. These findings confirm that our framework provides
trustworthy, constraint-compliant task completion.
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Figure 12: Wordle: % of successful completions by turn.

Related Work

We classify efforts to build trustworthy multi-turn LLM
agents into two directions: enhancing capability and auton-
omy and improving reliability and verification. The first fo-
cuses on how models reason, plan, and act coherently across
turns. Frameworks such as ReAct (Yao et al. 2023), Reflex-
ion (Shinn et al. 2023), Toolformer (Schick et al. 2023),
AutoGPT (Richards 2023), BabyAGI (Nakajima 2023),
MemGPT (Packer et al. 2024), and Voyager (Wang et al.
2023) extend autonomy via integrated reasoning, memory,
and tool use. However, they treat trust as an implicit out-
come of competence: agents are deemed reliable if they ap-
pear successful. Their control dynamics remain embedded
within opaque text-generation loops, lacking mechanisms

to verify whether internal reasoning aligns with task con-
straints or feedback. They perform well on short-horizon
reasoning but struggle with cumulative, verifiable behavior
over extended interactions.

Recent work makes reasoning more explicit through
structured planning and cognitive control. Frameworks
such as Tree of Thoughts (Yao et al. 2024), Graph
of Thoughts (Besta, Gazzetti, and Hoefler 2024), Plan-
Bench (Zhou et al. 2023), AgentBench (Li et al. 2023),
and the Hierarchical Reasoning Model (HRM) (Wang et al.
2025) organize reasoning into explicit or multi-level struc-
tures. These approaches advance transparency but still de-
pend on prompt-level orchestration or architectural hierar-
chy rather than persistent modules that can learn and re-
fine reasoning strategies. Even when reasoning is external-
ized, uncertainty and explanation faithfulness remain open
challenges (Ganguly et al. 2025; Matton, Chen, and Grosse
2025).

The second direction targets verification and constraint
satisfaction. SelfCheckGPT (Manakul, Liusie, and Gales
2023) verify or constrain outputs during or after decoding;
faithful reasoning and process supervision (Lightman et al.
2023) improve interpretability. While effective for factuality
and safety, these methods regulate behavior only post hoc
and remain external to the agent’s learning process. Recent
studies reveal similar reliability gaps: LLM judges show
inconsistent validation under task indeterminacy (Guerdan
et al. 2025), and instruction-following models misestimate
their own uncertainty (Apple Machine Learning Research
2025). Efforts to improve evaluation diversity and consis-
tency, especially in structured domains (Zhou et al. 2025),
further underscore the need for integrated, environment-
aware verification.

Our framework unifies these directions by embedding ca-
pability, planning, and verifiability within a single feedback-
driven system. It aligns with broader efforts to formal-
ize trust—through certified guarantees (Li 2025), human-
centered trust calibration (Swoopes, Patel, and Hofmann
2025), and conceptual mappings of trustworthiness dimen-
sions (de Cerqueira, Oliveira, and Rodrigues 2025)—but dif-
fers by operationalizing trust as behavioral guidance within
the agent’s own feedback loop.

Conclusion

We address the challenge of building trustworthy multi-turn
LLM agents capable of reliable and verifiable task comple-
tion. We introduce a framework for behavioral guidance that
embeds LLMs in an action—observation—reward loop and
augments them with adaptive modules for task profiling,
structured reasoning, and constraint-compliant generation.

Our initial experiments show that guided agents achieve
higher task success, more consistent reasoning, and stronger
constraint compliance than baseline models. While our find-
ings represent an early step, they suggest that structured be-
havioral guidance can make LLM behavior more reliable
and trustworthy.
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